Skip to main content
Log in

The stiffness assessment of the blade composite structure using a proposed sub-model arbitrary rectangular with delamination effect

  • Short Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this paper, the vibration of a stratified composite plate has been investigated using finite element analysis. The first order shear deformation theory (FSDT) together with Hamilton’s principle approaches are detailed for eventual calculation of natural frequencies; thus, the approach evaluates the natural frequencies based on FE using Ansys Mechanical and Ansys composite PrePost based on the FSDT method. A composite plate is assessed with and without artificial delamination to interpret dynamic performances about composite laminates of the blade structure. Consequently, a set of analysis studies has been carried out on fiber’s orientation, laminates number, boundary conditions (BC), delamination area and their orientation. The most relevant findings from this research paper can be evaluated as those natural frequencies are decreased due to delamination progression of 7% at high vibration mode level; therefore, it reduces the robustness of the blade structure. In addition, the influence of BC is discussed regarding blade structure. As alternative solutions for revealing rigidity, composite materials architecture is defined as density degree, fiber orientation, BC and delamination areas, which are the main parameter to improving vibration response of the overall blade structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Authors confirm that all relevant data and material are included in the article.

Code availability

Authors ensure that all relevant data are included in the article.

Abbreviations

FEA:

Finite element analysis

FSDT:

First-order shear deformation theory

HSDT:

High-order shear deformation theory

CLPT:

Classical laminates plate theory

ACP:

Ansys composite prepost

BC:

Boundary conditions

HAWTB:

Horizontal axis wind turbine blade

FRP:

Fabric reinforced polymer

FEM:

Finite element method

DOF:

Degrees of freedom

WTB:

Wind turbine blade

References

  1. Willis, D.J., Niezrecki, C., Kuchma, D., Hines, E., Arwade, S.R., Barthelmie, R.J., Rotea, M.: Wind energy research: State-of-the-art and future research directions. Renew. Energy 125, 133–154 (2018)

    Article  Google Scholar 

  2. Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C.L., Carlson, O., Wiser, R.: Grand challenges in the science of wind energy. Science 366, 6464 (2019)

    Article  Google Scholar 

  3. Mohanty, A.K., Vivekanandhan, S., Pin, J.-M., Misra, M.: Composites from renewable and sustainable resources: challenges and innovations. Science 362, 536–542 (2018)

    Article  Google Scholar 

  4. Rajad, O., Mounir, H.: A review on the HAWCTB performance enhancement methods, numerical models and AI concept used for the blade composite structure assessment: context of new industry 5.0. In: Proceedings of the 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), 2021, pp. 1–6. https://doi.org/10.1109/IRSEC53969.2021.9741193.

  5. Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Eng. Anal. Bound. Elem. 17, 1–12 (2017)

    Google Scholar 

  6. Rezaiee-Pajand, M., Masoodi, A.R., Rajabzadeh-Safaei, N.: Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures. Steel Compos. Struct. 30(6), 493–516 (2019)

    MATH  Google Scholar 

  7. Liu, G., Chen, G., Cui, F., Xi, A.: Nonlinear vibration analysis of composite blade with variable rotating speed using Chebyshev polynomials. Eur. J. Mech.-A/Solids 82, 103976 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Vu, T.-V., Nguyen, N.-H., Khosravifard, A., Hematiyan, M., Tanaka, S., Quoc, T.: A simple FSDT-based meshfree method for analysis of functionally graded plates. Eng. Anal. Bound. Elem. 79, 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Peng, L.X., Kitipornchai, S., Liew, K.M.: Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method. Int. J. Mech. Sci. 47(2), 251–276 (2005)

    Article  MATH  Google Scholar 

  10. Shukla, V., Jeeoot, S.: Modeling and analysis of cross-ply and angle-ply laminated plates under patch loads using RBF based meshfree method and new HSDT. Comput. Math. Appl. 79, 2240–2257 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shahbazi, M., Boroomand, B., Soghrati, S.: On using exponential basis functions for laminates modeled by CLPT, FSDT and TSDT: further tests and results. Compos. Struct. 94, 2263–2268 (2012)

    Article  Google Scholar 

  12. Ji, R., Zhao, L., Wang, K., Liu, Y.G.F., Jianyu, Z.: Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression. Compos. Struct. 256, 113121 (2021)

    Article  Google Scholar 

  13. Zhang, Z., He, M., Liu, A., Singh, H.K., Ramakrishnan, K.R., Hui, D., Shankar, K., Morozov, E.V.: Vibration-based assessment of delaminations in FRP composite plates. Compos. B 144, 256–264 (2018)

    Article  Google Scholar 

  14. Kahla, H.B.: Micro-cracking and delaminations of composite laminates under tensile quasi-static and cyclic loading. Doctoral dissertation, Luleå tekniska universitet (2019)

  15. Pudipeddi, G.T., Ng, C.T., Kotousov, A.: Mode conversion and scattering of Lamb waves at delaminations in composite laminates. J. Aerosp. Eng. 32, 04019067 (2019)

    Article  Google Scholar 

  16. Tay, T.: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Appl. Mech. Rev. 56, 1–32 (2003)

    Article  Google Scholar 

  17. Aslan, Z., Daricik, F.: Effects of multiple delaminations on the compressive, tensile, flexural, and buckling behaviour of E-glass/epoxy composites. Compos. B 100, 186–196 (2016)

    Article  Google Scholar 

  18. Liu, P., Groves, R.M., Benedictus, R.: 3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography. NDT E Int. 64, 52–58 (2014)

    Article  Google Scholar 

  19. Meng, Z., Li, G., Wang, X., Sait, S.M., Yıldız, A.R.: A comparative study of metaheuristic algorithms for reliability-based design optimization problems. Arch. Comput. Methods Eng. 28(3), 1853–1869 (2021)

    Article  MathSciNet  Google Scholar 

  20. Karaduman, A., Yıldız, B.S., Yıldız, A.R.: Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry. Int. J. Veh. Des. 80(2–4), 330–345 (2019)

    Article  Google Scholar 

  21. Güler, T., Demirci, E., Yıldız, A.R., Yavuz, U.: Lightweight design of an automobile hinge component using glass fiber polyamide composites. Mater. Testing 60(3), 306–310 (2018)

    Article  Google Scholar 

  22. Demirci, E., Yıldız, A.R.: A new hybrid approach for reliability-based design optimization of structural components. Mater. Testing 61(2), 111–119 (2019)

    Article  Google Scholar 

  23. Guo, S., Zhang, X., Shi, C., Zhao, D., Liu, E., He, C., Zhao, N.: Comprehensive performance regulation of Cu matrix composites with graphene nanoplatelets in situ encapsulated Al2O3 nanoparticles as reinforcement. Carbon 188, 81–94 (2022)

    Article  Google Scholar 

  24. Rajad, O., Mounir, H.: Modeling, understanding and enhancing the mechanical response of the HAWTB composite structure through the nonlinear FE analysis of a proposed submodel. Int. J. Interact. Des. Manuf. (IJIDeM) 15, 631–659 (2021)

    Article  Google Scholar 

  25. Rajad, O., Mounir, H., Marjani, A., Fertahi, S-D.: Nonlinear modeling analysis of the coupled mechanical strength and stiffness enhancement of composite materials of a Horizontal Axis Wind Turbine Blade (HAWTB). Int. J. Interact. Des. Manuf. (IJIDeM), pp. 1–24 (2022)

  26. Rajad, O., Hamid, M., Marjani, A.E.: Fiber orientation effect on the behavior of the composite materials of the horizontal axis wind turbine blade (HAWTB). In: 6th International Renewable and Sustainable Energy Conference (IRSEC), pp. 1–6 (2018)

  27. Amadane, Y., Mounir, H.: Performance improvement of a PEMFC with dead-end anode by using CFD-Taguchi approach. J. Electroanal. Chem. 904, 115909 (2022)

    Article  Google Scholar 

  28. Yassine, A., Hamid, M., El, M.A., Mohamed, K.E.: A computational fluid dynamics (CFD) investigation of two PEM fuel cells with straight single-channel(SC):SC-40mm and SC-50mm. In: 6th International Renewable and Sustainable Energy Conference (IRSEC), no. 18637065, pp. 1–5 (2018)

  29. Bhar, A., Phoenix, S.S., Satsangi, S.K.: Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: a comparative perspective. Compos. Struct. 92(2), 312–321 (2010)

    Article  Google Scholar 

  30. Almeida, A., Donadon, M., Faria, A., Almeida, S.D.: The effect of piezoelectrically induced stress stiffening on the aeroelastic stability of curved composite panels. Compos. Struct. 94, 3201–3211 (2012)

    Article  Google Scholar 

  31. Kim, I.B., Song-Hak, U., Sin, S.H.: Global stiffness determination of a cross-ply laminated composite plate with distributed delaminations and matrix cracks and its application. Compos. Struct. 233, 111586 (2020)

    Article  Google Scholar 

  32. Maroua, H., El Mahi, A., Karra, C., Haddar, M.: Non linear behaviour of glass fibre reinforced composites with delamination. Compos. B Eng. 92, 350–359 (2016)

    Article  Google Scholar 

  33. Nachtane, M., Tarfaoui, M., Mohammed, M.A., Saifaoui, D., Moumen, A.E.: Effects of environmental exposure on the mechanical properties of composite tidal current turbine. Renew. Energy 156, 1132–1145 (2020)

    Article  Google Scholar 

  34. Kumar, A., Jaiswal, H., Patil, P.: FEM simulation based computation of natural frequencies and mode shapes of loose transmission gearbox casing. Int. Rev. Model. Simul. (IREMOS) 7(5), 900–905 (2014)

    Article  Google Scholar 

  35. Belfkira, Z., Mounir, H., El Marjani, A.: Comparison of experimental and numerical performances of a wind turbine airfoil using XFOIL and computational fluid dynamics simulation. Int. Rev. Model. Simul. (IREMOS) 12(4), 212–221 (2019)

    Article  Google Scholar 

  36. Fertahi, S.-D., Bouhal, T., Rajad, O., Kousksou, T., Arid, A., Rhafiki, E., Benbassou, A.: CFD performance enhancement of a low cut-in speed current Vertical Tidal Turbine through the nested hybridization of Savonius and Darrieus. Energy Convers. Manag. 169, 266–276 (2018)

    Article  Google Scholar 

  37. Hammami, M.: Comportement mécanique et vibratoire des composites stratifiés sains et endommagés par délaminage. Acoustique, Université du Maine, 2016. Français. <NNT : 2016LEMA1022>. <tel-01777958>.

  38. İpek, G., Arman, Y., Çelik, A.: The effect of delamination size and location to buckling behavior of composite materials. Compos. B Eng. 155, 69–76 (2018)

    Article  Google Scholar 

  39. Köllner, A.: Predicting buckling-driven delamination propagation in composite laminates: An analytical modelling approach. Compos. Struct. 266, 113776 (2021)

    Article  Google Scholar 

  40. Bogenfeld, R., Freund, S., Schu, A.: An analytical damage tolerance method accounting for delamination in compression-loaded composites. Eng. Fail. Anal. 118, 104875 (2020)

    Article  Google Scholar 

  41. Chen, X., Tang, J., Yang, K.: Modeling multiple failures of composite box beams used in wind turbine blades. Compos. Struct. 217, 130–142 (2019)

    Article  Google Scholar 

  42. Tarfaoui Mostapha, N.M., Hafedh, K., Dennoun, S.: Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 25(2), 237–254 (2018)

    Article  Google Scholar 

  43. Liu, H.A.Z.Z., Hongbo, J., Quanlong, L., Yanju, L., Jinsong, L.: A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models. Compos. Struct. 252, 112702 (2020)

    Article  Google Scholar 

  44. Alaa, M.R.: Study of some mechanical properties and erosive behavior by taguchi method for hybrid nano composites. Eng. Technol. J. 36(4), 471–479 (2018)

    MathSciNet  Google Scholar 

  45. Albanesi, A., Roman, N., Bre, F., Fachinotti, V.: A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades. Compos. Struct. 194, 345–356 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was not supported by any public, commercial, or non-profit company.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

OR: Conceptualization, Methodology, Software, Validation, Investigation, Visualization, Writing—original draft. HM: Reviewing, Supervision.

Corresponding author

Correspondence to Omar Rajad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajad, O., Mounir, H. The stiffness assessment of the blade composite structure using a proposed sub-model arbitrary rectangular with delamination effect. Int J Interact Des Manuf 16, 1197–1207 (2022). https://doi.org/10.1007/s12008-022-00891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00891-4

Keywords

Navigation