Skip to main content

Advertisement

Log in

Prediction of a flying droplet landing over a non-flat substrates for ink-jet applications

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Printing with inkjet technology has found new forms of application in the industry and in this article we study this technology focused on printing on non-flat surfaces. Since there is no print history over distances greater than 1 mm due to the rupture phenomenon, an initial quality standard is defined to measure achievements in a relative manner. An interactive method is used that requires the user to approach the machine in multiple analyzes of different types. The first approach is a mathematical model this model was constructed to predict the drop distance of the drop in the non-planar substrate with respect to the planned one in the flat substrate, taking into account that most of the drops fall to different heights presenting a greater or lesser state of development the phenomena present in the flight. The results allow to initiate a process of compensation that avoids the distortion of the figure to improve the printing resolution. The results are validated using a relative quality through industrial ink-jet printer with heads capable of injecting functional fluids. The initial result indicates that in standard surface printing with print relative quality already defined, it can be used only for low resolution formats with thick lines, and the result can be improved when the original figure is treated by compensating the distance between the numerical prediction and the initial objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Wang, C.-T., Huang, K.-Y., Lin, D.T., Liao, W.-C., Lin, H.W., Hu, Y.-C.: A flexible proximity sensor fully fabricated by inkjet printing. Sensors 10(5), 5054–5062 (2010)

    Article  Google Scholar 

  2. Komuro, N., Takaki, S., Suzuki, K., Citterio, D.: Inkjet printed (bio) chemical sensing devices. Anal. Bioanal. Chem. 405(17), 5785–5805 (2013)

    Article  Google Scholar 

  3. Lorber, B., Hsiao, W.-K., Hutchings, I.M., Marti, K.R.: Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication 6(1), 015001 (2013)

    Article  Google Scholar 

  4. Xu, T., Jin, J., Gregory, C., Hickman, J.J., Boland, T.: Inkjet printing of viable mammalian cells. Biomaterials 26(1), 93–99 (2005)

    Article  Google Scholar 

  5. Shirazi, S.F.S., Gharehkhani, S., Mehrali, M., Yarmand, H., Metselaa, H.S.C., Kadri, N.A., Osman, N.A.A.: A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3d printing. Sci. Technol. Adv. Mater. 16(3), 033502 (2015)

    Article  Google Scholar 

  6. Ozkol, E.: Rheological characterization of aqueous 3y-tzp inks optimized for direct thermal ink-jet printing of ceramic components. J. Am. Ceram. Soc. 96(4), 1124–1130 (2013)

    Article  Google Scholar 

  7. Arango, I., Betancur, M., Bonil, L., Acevedo, D.: Impresion digital inkjet sobre formas cilındricas con tintas uv. Manufactura flexible, p. 109

  8. Rahul, S.H., Balasubramanian, K., Venkatesh, S.: Optimizing inkjet printing process to fabricate thick ceramic coatings. Ceram. Int. 43, 4513 (2016)

    Article  Google Scholar 

  9. Arazn, A., Janeczek, K., Futera, K.: Mechanical and thermal reliability of conductive circuits inkjet printed on flexible substrates. Circuit World 43(1), 9 (2017)

    Article  Google Scholar 

  10. Ikegaw, M., Ishii, E., Harada, N., Takagishi, T.: Development of ink-particle flight simulation for continuous inkjet printers. J. Manuf. Sci. Eng. 136(5), 051021 (2014)

    Article  Google Scholar 

  11. Yeo, L.P., Lok, B.K., Nguyen, Q.M.P., Lu, C.W., Lam, Y.C.: Selective surface modification of pet substrate for inkjet printing. Int. J. Adv. Manuf. Technol. 71(912), 1749–1755 (2014)

    Article  Google Scholar 

  12. Fathi, S., Dickens, P.: Droplet analysis in an inkjet-integrated manufacturing process for nylon 6. Int. J. Adv. Manuf. Technol. 69(1–4), 269–275 (2013)

    Article  Google Scholar 

  13. Ozkan, M., Dimic-Misic, K., Karakoc, A., Hashmi, S.G., Lund, P., Maloney, T., Paltakari, J.: Rheological characterization of liquid electrolytes for dropon-demand inkjet printing. Organic Electron. 38, 307–315 (2016)

    Article  Google Scholar 

  14. Wijshoff, H.: Structure-and Fluid-Dynamics in Piezo Inkjet Printheads. University of Twente, Enschede (2008)

    Google Scholar 

  15. Vaezi, M., Seitz, H., Yan, S.: A review on 3d microadditive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67(5–8), 1721–1754 (2013)

    Article  Google Scholar 

  16. Huang, S.H., Liu, P., Mokasdar, A., Hou, L.: Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67(5–8), 1191–1203 (2013)

    Article  Google Scholar 

  17. Campbell, P.G., Weiss, L.E.: Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Therapy 7(8), 1123–1127 (2007)

    Article  Google Scholar 

  18. Subbaraman, H., Pham, D.T., Xu, X., Chen, M.Y., Hosseini, A., Lu, X., Chen, R.T.: Inkjet-printed twodimensional phased-array antenna on a flexible substrate. IEEE Antennas Wirel. Propag. Lett. 12, 170–173 (2013)

    Article  Google Scholar 

  19. Perelaer, J., Hendriks, C.E., de Laat, A.W.M., Schubert, U.S.: One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16), 165303 (2009)

    Article  Google Scholar 

  20. Y-a, J., He, Y., Gao, Q., J-z, F., G-q, F.: Droplet deviation modeling and compensation scheme of inkjet printing. Int. J. Adv. Manuf. Technol. 75(9–12), 1405–1415 (2014)

    Google Scholar 

  21. Friederich, A., Binder, J.R., Bauer, W.: Rheological control of the coffee stain effect for inkjet printing of ceramics. J. Am. Ceram. Soc. 96(7), 2093–2099 (2013)

    Article  Google Scholar 

  22. Arango, I., Canas, M.: Dynamic analysis of a recirculation system of micro functional fluids for ink-jet applications. Microsyst. Technol. 23(5), 1485–1494 (2017)

    Article  Google Scholar 

  23. Krieger, I.M., Dougherty, T.J.: A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3(1), 137–152 (1959)

    Article  MATH  Google Scholar 

  24. Poletto, M., Joseph, D.D.: Effective density and viscosity of a suspension. J. Rheol. 39(2), 323–343 (1995)

    Article  Google Scholar 

  25. Rodriguez-Rivero, C., Castrejon-Pita, J.R., Hutchings, I.M.: Aerodynamic effects in industrial inkjet printing. J. Imaging Sci. Technol. 59(4), 40401–1 (2015)

    Article  Google Scholar 

  26. Barnett, D., McDonald, M.: Evaluation and reduction of elevated height printing defects. In: NIP and Digital Fabrication Conference, vol. 2014, pp. 38–43. Society for Imaging Science and Technology (2014)

  27. Hsiao, W.K., Martin, G.D., Hoath, S.D., Hutchings, I.M., Hook, M., Massucci, M.: Evidence of print gap airflow affecting web printing quality. In: Society for Imaging Science and Technology, NIP and Digital Fabrication Conference, vol. 2013, pp. 303–306 (2013)

  28. Link, N., Lampert, S., Gurka, R., Liberzon, A., Hetsroni, G., Semiat, R.: Ink drop motion in wide-format printers: ii. airflow investigation. Chem. Eng. Process. Process Intensif. 48(1), 84–91 (2009)

    Article  Google Scholar 

  29. Pilch, M., Erdman, C.A.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13(6), 741–757 (1987)

    Article  Google Scholar 

  30. Theofanous, T.G., Mitkin, V.V., Ng, C.L.: The physics of aerobreakup. iii. Viscoelastic liquids. Phys. Fluids 25(3), 032101 (2013)

    Article  Google Scholar 

  31. Barone, S., Casinelli, M., Frascaria, M., Paoli, A., Razionale, A.V.: Interactive design of dental implant placements through cad-cam technologies: from 3d imaging to additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM) 10(2), 105–117 (2016)

    Article  Google Scholar 

  32. Wu, H.-C., Shan, T.-R., Hwang, W.-S., Lin, H.-J.: Study of micro-droplet behavior for a piezoelectric inkjet printing device using a single pulse voltage pattern. Mater. Trans. 45(5), 1794–1801 (2004)

    Article  Google Scholar 

  33. Guildenbecher, D.R., Lopez-Rivera, C., Sojka, P.E.: Secondary atomization. Exp. Fluids 46(3), 371 (2009)

    Article  Google Scholar 

  34. Hsiang, L.-P., Faeth, G.M.: Near-limit drop deformation and secondary breakup. Int. J. Multiph. Flow 18(5), 635–652 (1992)

    Article  MATH  Google Scholar 

  35. Dadvand, A., Shervani Tabar, M.T., Khoo, B.C.: A note on spark bubble drop-on-demand droplet generation: simulation and experiment. Int. J. Adv. Manuf. Technol. 56(1–4), 245–259 (2011)

    Article  Google Scholar 

  36. Roisman, I.V., Rioboo, R., Tropea, C.: Normal impact of a liquid drop on a dry surface: model for spreading and receding. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 1411–1430. The Royal Society, London (2002)

  37. Chandra, S., Avedisian, C.T.: On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432(1884), 13–41 (1991)

    Article  Google Scholar 

  38. Hutchings, I.M., Martin, G.D.: Inkjet Technology for Digital Fabrication. Wiley, London (2012)

    Book  Google Scholar 

  39. Perelaer, J., Smith, P.J., van den Bosch, E., van Grootel, S.C., Ketelaars, P.H.J.M., Schubert, U.S.: The spreading of inkjet-printed droplets with varying polymer molar mass on a dry solid substrate. Macromol. Chem. Phys. 210(6), 495–502 (2009)

    Article  Google Scholar 

  40. Tong, W., Cheung, E.H.: Enhanced stl. Int. J. Adv. Manuf. Technol. 29(11–12), 1143–1150 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Arango.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arango, I., Bonil, L., Posada, D. et al. Prediction of a flying droplet landing over a non-flat substrates for ink-jet applications. Int J Interact Des Manuf 13, 967–980 (2019). https://doi.org/10.1007/s12008-019-00547-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00547-w

Keywords

Navigation