Skip to main content

Advertisement

Log in

Fuzzy dual experience-based design evaluation model for integrating engineering design into customer responses

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Experience-based design is a recently emerging method used to capture the emotional content of customer experiences. Both the engineer’s experiences and customer’s experiences for dual experiences are important in delivering high quality user-centred product design. To assess dual experiential design optimization, fuzzy decision tree and fuzzy cognitive map are integrated in engineering design perspectives. This study aims at optimizing complex interactions and experiential design system with imprecise relationships while quantifying the performance impact of engineering design efficiency on customer satisfaction. The experiment is conducted by utilizing sensitivity analysis of the three degrees of fuzzy membership function using a product mix-experience problem. The evaluation results show that this dual experience-based design approach can help R&D design, deliver high quality product development experiences and co-create value with customers to yield a high performance engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afshari, H., Peng, Q.: Modeling and quantifying uncertainty in the product design phase for effects of user preference changes. Ind. Manage. Data Syst. 115(9), 1637–1665 (2015)

    Article  Google Scholar 

  2. Andrea, K., Müller-Putzb, G., Mattiac, D.: User-centred design in brain-computer interface research and development. Ann. Phys. Rehab. Med. 58(5), 312–319 (2015)

    Article  Google Scholar 

  3. Aurup, G.M., Akgunduz, A.: Pair-wise preference comparisons ising alpha-peak frequencies. J. Integr. Des. Process Sci. 16(4), 3–18 (2012)

    Google Scholar 

  4. Aydin, I., Karakose, M., Akin, E.: An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space. ISA Trans. 53(2), 220–229 (2014)

    Article  Google Scholar 

  5. Bate, P., Robert, G.: Experience-based design: from redesigning the system around the patient to co-designing services with the patient. Qual. Saf. Health Care 15(5), 307–310 (2006)

    Article  Google Scholar 

  6. Battarbee, K., Koskinen, I.: Co-Experience: user experience as interaction. CoDesign 1(1), 5–18 (2005)

    Article  Google Scholar 

  7. Buntine, W., Niblett, T.: A further comparison of splitting rules for decision-tree induction. Mach. Learn. 8(1), 75–85 (1992)

    Google Scholar 

  8. Carvalho, D.R., Freitas, A.A.: A hybrid decision tree/genetic algorithm method for data mining. Inform. Sci. 163(1), 13–35 (2004)

    Article  Google Scholar 

  9. Chamorro-Koc, M., Popovic, V., Emmison, M.: Using visual representation of concepts to explore users and designers’ concepts of everyday products. Design Stud. 29(2), 142–159 (2008)

    Article  Google Scholar 

  10. Chandra, B., Varghese, P.P.: Fuzzy sliq decision tree algorithm. IEEE Trans. Syst. Man Cybern. B Cybern IEEE Trans. 38(5), 1294–1301 (2008)

    Article  Google Scholar 

  11. Chang, P.-C., Liu, C.-H.: A tsk type fuzzy rule based system for stock price prediction. Expert Syst. Appl. 34(1), 135–144 (2008)

    Article  Google Scholar 

  12. Cheah, W.P., Kim, Y.S., Kim, K.-Y., Yang, H.-J.: Systematic causal knowledge acquisition using fcm constructor for product design decision support. Expert Syst. Appl. 38(12), 15316–15331 (2011)

    Article  Google Scholar 

  13. Chen, D., Wang, X., Liu, W., Zeng, Y.: Ebd extended analytic hierarchy process (Ahp) approach to evaluating the effectiveness of engineering projects. J. Integr. Des. Process Sci. 19(2), 49–70 (2015)

    Article  Google Scholar 

  14. Chen, L., Pu, P.: Survey of preference elicitation methods. Tech. rep., Swiss Federal Institute of Technolog. In: Lausanne, EPFL (2004)

  15. Cochran, J.K., Chen, H.-N.: Fuzzy multi-criteria selection of object-oriented simulation software for production system analysis. Comput. Oper. Res. 32(1), 153–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dilip, R., Yannou, B., Farel, R., Poirson, E.: Customer sentiment appraisal from user-generated product reviews: a domain independent heuristic algorithm. Int. J. Interact. Des. Manuf. (IJIDeM) 9(3), 201–211 (2015)

    Article  Google Scholar 

  17. Dukic, T., Rönnäng, M., Christmansson, M.: Evaluation of ergonomics in a virtual manufacturing process. J. Eng. Des. 18(2), 125–137 (2007)

    Article  Google Scholar 

  18. Glykas, M.: Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications. Springer, Berlin Heidelberg (2010)

    Book  MATH  Google Scholar 

  19. Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T., Danks, D.: A theory of causal learning in children: causal maps and bayes nets. Psychol. Rev. 111(1), 3 (2004)

    Article  Google Scholar 

  20. Gorecky D., Schmitt, M., Loskyll, M., Zuhlke, D.: Human-machine-interaction in the industry 4.0 era. In: 12th IEEE International Conference on Industrial Informatics (INDIN), pp 289–294 (2014)

  21. Gregory, C.S., Shana, S.: Latent semantic engineering: a new conceptual user-centered design approach. Adv. Eng. Inform. 26(2), 456–473 (2012)

    Article  Google Scholar 

  22. Hassenzahl, M., Tractinsky, N.: User experience-a research agenda. Behav. Inform. Technol. 25(2), 91–97 (2006)

    Article  Google Scholar 

  23. Hayashi, F., Inoue, T.: The relation between firm growth and Q with multiple capital goods: theory and evidence from panel data on Japanese firms. Econometrica 59(3), 731–753 (1991)

    Article  Google Scholar 

  24. Horng, S.-C., Yang, F.-Y., Lin, S.-S.: Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter. Expert Syst. Appl. 38(1), 933–940 (2011)

    Article  Google Scholar 

  25. Hsieh, Y.-H., Lin, Y.-T., Yuan, S.-T.: Expectation-based coopetition approach to service experience design. Simulat. Model. Pract. Theory 34, 64–85 (2013)

    Article  Google Scholar 

  26. Jones, I.A., Kim, K.-Y.: Systematic service product requirement analysis with online customer review data. J. Integr. Des. Process Sci. 19(2), 25–48 (2016)

    Article  Google Scholar 

  27. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986)

    Article  MATH  Google Scholar 

  28. Kyriacos, C., Chena, S.Y.: Investigation of users’ preferences in interactive multimedia learning systems: a data mining approach. Interact. Learn. Environ. 17(2), 151–163 (2009)

    Article  Google Scholar 

  29. Lee, K.C., Lee, H., Lee, N., Lim, J.: An agent-based fuzzy cognitive map approach to the strategic marketing planning for industrial firms. Ind. Mark. Manage. 42(4), 552–563 (2013)

    Article  Google Scholar 

  30. Lee, S., Yang, J., Han, J.: Development of a decision making system for selection of dental implant abutments based on the fuzzy cognitive map. Expert Syst. Appl. 39(14), 11564–11575 (2012)

    Article  Google Scholar 

  31. Liu, S., Boyle, I.M.: Engineering design: perspectives, challenges, and recent advances. J. Eng. Des. 20(1), 7–19 (2009)

    Article  Google Scholar 

  32. Liu, X., Feng, X., Pedrycz, W.: Extraction of fuzzy rules from fuzzy decision trees: an axiomatic fuzzy sets (Afs) approach. Data Knowl. Eng. 84, 1–25 (2013)

    Article  Google Scholar 

  33. Luh, D.-B., Ma, C.-H., Hsieh, M.-H., Huang, C.-Y.: Using the systematic empathic design method for customer-centered products development. J. Integr. Des. Process Sci. 16(4), 31–54 (2012)

    Google Scholar 

  34. Overbeeke, K.C., Djajadiningrat, J.P., Hummels, C.C.M., Wensveen, S.A.G.: Beauty in usability: forget about ease of use. In: Green, W.S., Jordan, P.W. (eds.) Pleasure with Products: Beyond usability, pp. 97–111. Taylor & Francis, London (2002)

    Google Scholar 

  35. Poirson, E., Dépincé, P., Petiot, J.: User-centered design by genetic algorithms: application to brass musical instrument optimization. Eng. Appl. Artif. Intell. 20(4), 511–518 (2007)

    Article  Google Scholar 

  36. Pullman, M.E., Gross, M.A.: Ability of experience design elements to elicit emotions and loyalty behaviors. Decis. Sci. 35(3), 551–578 (2004)

    Article  Google Scholar 

  37. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  38. Romijn, H., Albaladejo, M.: Determinants of innovation capability in small electronics and software firms in southeast England. Res. Policy 31(7), 1053–1067 (2002)

    Article  Google Scholar 

  39. Russ, L.R., Phillips, J., Brzozowicz, K., Chafetz, L.A., Plsek, P. E., Blackmore, C.C., Kaplan, G.S.: Experience-Based Design for Integrating the Patient Care Experience into Healthcare Improvement: Identifying a Set of Reliable Emotion Words. Healthcare (2013)

  40. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Salmeron, J.L., Gutierrez, E.: Fuzzy grey cognitive maps in reliability engineering. Appl. Soft Comput. 12(12), 3818–3824 (2012)

    Article  Google Scholar 

  42. Sarkar, P., Chakrabarti, A.: Assessing design creativity. Des. Stud. 32(4), 348–383 (2011)

    Article  Google Scholar 

  43. Schütte, S.: Developing the space of properties supporting Kansei engineering procedure. Int. J. Kansei Eng. 5(4), 11–20 (2006)

    Article  Google Scholar 

  44. Serena, G., Ferrise, F., Furtado, G.P., Bordegoni, M.: Reverse engineering of interactive mechanical interfaces for product experience design. Virtual Phys. Prototyping 9(2), 65–79 (2014)

    Article  Google Scholar 

  45. Stylios, C.D., Groumpos, P. P.: Fuzzy cognitive maps multimodel for complex manufacturing systems. In: Ninth IFAC Symposium on Large Scale Systems: Theory and Applications (LSS’01) (2001)

  46. Tesar, D.: Meeting human needs by leveraging the next wave of technology. J. Integr. Des. Process Sci. 19(2), 5–24 (2016)

    Article  Google Scholar 

  47. Wright, P., McCarthy, J.: Experience-centered design: designers, users, and communities in dialogue. Synth. Lect. Hum. Centered Inform. 3(1), 1–123 (2010)

    Article  Google Scholar 

  48. Wright, P., McCarthy, J., Meekison, L.: Making Sense of Experience Funology. Springer, Berlin (2005)

    Google Scholar 

  49. Xavier, F., Nadeau, J.-P.: Research in Interactive Design Vol. 3, ISBN : 978-2-8178-0168-1. Springer (2011)

  50. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995)

    Article  MathSciNet  Google Scholar 

  51. Yan, Y., Poirson, E., Bennis, F.: An interactive motion planning framework that can learn from experience. Comput. Aided Des. 59, 23–38 (2015)

    Article  Google Scholar 

  52. Zadeh, L.A.: Fuzzy sets. Inform. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, RY. Fuzzy dual experience-based design evaluation model for integrating engineering design into customer responses. Int J Interact Des Manuf 10, 439–458 (2016). https://doi.org/10.1007/s12008-016-0310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-016-0310-y

Keywords

Navigation