Skip to main content

Advertisement

Log in

Validation of Porcine Knee as a Sex-specific Model to Study Human Anterior Cruciate Ligament Disorders

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Animal models have long been considered an important modality for studying ACL injuries. However, to our knowledge, the value of these preclinical models to study sex-related phenomena associated with ACL injury and recovery has not been evaluated.

Questions/purposes

We asked whether (1) prominent anatomic and (2) biomechanical factors differ between female and male porcine knees, particularly those known to increase the risk of ACL injury.

Methods

Eighteen intact minipig knees (nine males, nine females) underwent MRI to determine the femoral bicondylar width, intercondylar notch size (width, area and index), medial and lateral tibial slope, ACL size (length, cross-sectional area, and volume), and medial compartment tibiofemoral cartilage thickness. AP knee laxity at 30°, 60°, and 90° flexion and ACL tensile structural properties were measured using custom-designed loading fixtures in a universal tensile testing apparatus. Comparisons between males and females were performed for all anatomic and biomechanical measures. The findings then were compared with published data from human knees.

Results

Female pigs had smaller bicondylar widths (2.9 mm, ratio = 0.93, effect size = −1.5) and intercondylar notches (width: 2.0 mm, ratio = 0.79, effect size = −2.8; area: 30.8 mm2, ratio = 0.76, effect size = −2.1; index: 0.4, ratio = 0.84, effect size = −2.0), steeper lateral tibial slope (4.3°, ratio = 1.13, effect size = 1.1), smaller ACL (length: 2.7 mm, ratio = 0.91, effect size = −1.1; area: 6.8 mm2, ratio = 0.74, effect size = −1.5; volume: 266.2 mm3, ratio = 0.68, effect size = −1.5), thinner medial femoral cartilage (0.4 mm, ratio = 0.8, effect size = −1.1), lower ACL yield load (275 N, ratio = 0.81, effect size = −1.1), and greater AP knee laxity at 30° (0.7 mm, ratio = 1.32, effect size = 1.1) and 90° (0.5 mm, ratio = 1.24, effect size = 1.1) flexion compared with their male counterparts. These differences were significant for all parameters (p ≤ 0.04). Observed sex-related differences were similar to those reported for the human knee.

Conclusions

Significant differences exist between knees of male and female pigs with respect to prominent anatomic and biomechanical factors. Our findings strongly agreed with published data regarding human knees.

Clinical Relevance

The findings highlight the use of the porcine large animal model to study the role of sex on ACL injuries and surgical outcome. This validated preclinical model may facilitate the development of novel, sex-specific interventions to prevent and treat ACL injuries for male and female patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2A–B
Fig. 3A–B
Fig. 4A–C

Similar content being viewed by others

References

  1. Ageberg E, Forssblad M, Herbertsson P, Roos EM. Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. Am J Sports Med. 2010;38:1334–1342.

    Article  PubMed  Google Scholar 

  2. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2014;42:2242–2252.

    Article  PubMed  Google Scholar 

  3. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med. 2001;29:58–66.

    CAS  PubMed  Google Scholar 

  4. Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am J Sports Med. 1995;23:694–701.

    Article  CAS  PubMed  Google Scholar 

  5. Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34:86–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Attia E, Brown H, Henshaw R, George S, Hannafin JA. Patterns of gene expression in a rabbit partial anterior cruciate ligament transection model: the potential role of mechanical forces. Am J Sports Med. 2010;38:348–356.

    Article  PubMed  Google Scholar 

  7. Beynnon BD, Johnson RJ, Tohyama H, Renstrom PA, Arms SW, Fischer RA. The relationship between anterior-posterior knee laxity and the structural properties of the patellar tendon graft: a study in canines. Am J Sports Med. 1994;22:812–820.

    Article  CAS  PubMed  Google Scholar 

  8. Biercevicz AM, Miranda DL, Machan JT, Murray MM, Fleming BC. In situ, noninvasive, T2*-weighted MRI-derived parameters predict ex vivo structural properties of an anterior cruciate ligament reconstruction or bioenhanced primary repair in a porcine model. Am J Sports Med. 2013;41:560–566.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J, Steering Group of the RETHINK Project. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62:196–220.

    Article  CAS  PubMed  Google Scholar 

  10. Boguszewski DV, Shearn JT, Wagner CT, Butler DL. Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: is the porcine knee ACL dependent? J Orthop Res. 2011;29:641–646.

    Article  PubMed  Google Scholar 

  11. Bowers ME, Trinh N, Tung GA, Crisco JJ, Kimia BB, Fleming BC. Quantitative MR imaging using “LiveWire” to measure tibiofemoral articular cartilage thickness. Osteoarthritis Cartilage. 2008;16:1167–1173.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bowers ME, Tung GA, Trinh N, Leventhal E, Crisco JJ, Kimia B, Fleming BC. Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI. Osteoarthritis Cartilage. 2008;16:572–578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech. 2006;39:2943–2950.

    Article  PubMed  Google Scholar 

  14. Chu CR, Beynnon BD, Buckwalter JA, Garrett WE Jr, Katz JN, Rodeo SA, Spindler KP, Stanton RA. Closing the gap between bench and bedside research for early arthritis therapies (EARTH): report from the AOSSM/NIH U-13 Post-Joint Injury Osteoarthritis Conference II. Am J Sports Med. 2011;39:1569–1578.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Clemmons RM, Bliss EL, Dorsey-Lee MR, Seachord CL, Meyers KM. Platelet function, size and yield in whole blood and in platelet-rich plasma prepared using differing centrifugation force and time in domestic and food-producing animals. Thromb Haemost. 1983;50:838–843.

    CAS  PubMed  Google Scholar 

  16. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  17. Cummings JF, Grood ES, Levy MS, Korvick DL, Wyatt R, Noyes FR. The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J Orthop Res. 2002;20:338–345.

    Article  CAS  PubMed  Google Scholar 

  18. Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D. Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg. 2007;127:253–260.

    Article  PubMed  Google Scholar 

  19. Fan H, Liu H, Toh SL, Goh JC. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30:4967–4977.

    Article  CAS  PubMed  Google Scholar 

  20. Fisher MB, Liang R, Jung HJ, Kim KE, Zamarra G, Almarza AJ, McMahon PJ, Woo SL. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc. 2012;20:1357–1365.

    Article  PubMed  Google Scholar 

  21. Fleming BC, Carey JL, Spindler KP, Murray MM. Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res. 2008;26:1500–1505.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM. Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009;37:1554–1563.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Gwinn DE, Wilckens JH, McDevitt ER, Ross G, Kao TC. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med. 2000;28:98–102.

    CAS  PubMed  Google Scholar 

  24. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90:2724–2734.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38:54–62.

    Article  PubMed  Google Scholar 

  26. Hunt P, Scheffler SU, Unterhauser FN, Weiler A. A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep. Arch Orthop Trauma Surg. 2005;125:238–248.

    Article  PubMed  Google Scholar 

  27. Institute of Medicine. Exploring the biological contributions to human health: does sex matter. J Womens Health Gend Based Med. 2001;10:433–439.

    Article  Google Scholar 

  28. Katsuragi R, Yasuda K, Tsujino J, Keira M, Kaneda K. The effect of nonphysiologically high initial tension on the mechanical properties of in situ frozen anterior cruciate ligament in a canine model. Am J Sports Med. 2000;28:47–56.

    CAS  PubMed  Google Scholar 

  29. Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am. 2011;93:994–1000.

    Article  PubMed  Google Scholar 

  30. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. 2013;41:385–395.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lindenfeld TN, Schmitt DJ, Hendy MP, Mangine RE, Noyes FR. Incidence of injury in indoor soccer. Am J Sports Med. 1994;22:364–371.

    Article  CAS  PubMed  Google Scholar 

  32. Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med. 2012;40:32–40.

    Article  PubMed  Google Scholar 

  33. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50:3145–3152.

    Article  CAS  PubMed  Google Scholar 

  34. Mastrangelo AN, Magarian EM, Palmer MP, Vavken P, Murray MM. The effect of skeletal maturity on the regenerative function of intrinsic ACL cells. J Orthop Res. 2010;28:644–651.

    PubMed Central  PubMed  Google Scholar 

  35. Mather RC 3rd, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, Bach BR Jr, Spindler KP; MOON Knee Group. Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am. 2013;95:1751–1759.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Messina DF, Farney WC, DeLee JC. The incidence of injury in Texas high school basketball: a prospective study among male and female athletes. Am J Sports Med. 1999;27:294–299.

    CAS  PubMed  Google Scholar 

  37. Miller TT. MR imaging of the knee. Sports Med Arthrosc. 2009;17:56–67.

    Article  PubMed  Google Scholar 

  38. Mueller XM, Tevaearai HT, Jegger D, Tucker O, von Segesser LK. Are standard human coagulation tests suitable in pigs and calves during extracorporeal circulation? Artif Organs. 2001;25:579–584.

    Article  CAS  PubMed  Google Scholar 

  39. Murray MM, Fleming BC. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. Am J Sports Med. 2013;41:1762–1770.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Murray MM, Spindler KP, Abreu E, Muller JA, Nedder A, Kelly M, Frino J, Zurakowski D, Valenza M, Snyder BD, Connolly SA. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25:81–91.

    Article  PubMed  Google Scholar 

  41. Myklebust G, Maehlum S, Holm I, Bahr R. A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand J Med Sci Sports. 1998;8:149–153.

    Article  CAS  PubMed  Google Scholar 

  42. Nebelung W, Wuschech H. Thirty-five years of follow-up of anterior cruciate ligament-deficient knees in high-level athletes. Arthroscopy. 2005;21:696–702.

    Article  PubMed  Google Scholar 

  43. Noojin FK, Barrett GR, Hartzog CW, Nash CR. Clinical comparison of intraarticular anterior cruciate ligament reconstruction using autogenous semitendinosus and gracilis tendons in men versus women. Am J Sports Med. 2000;28:783–789.

    CAS  PubMed  Google Scholar 

  44. O’Donoghue DH, Rockwood CA Jr, Frank GR, Jack SC, Kenyon R. Repair of the anterior cruciate ligament in dogs. J Bone Joint Surg Am. 1966;48:503–519.

    PubMed  Google Scholar 

  45. Oe K, Kushida T, Okamoto N, Umeda M, Nakamura T, Ikehara S, Iida H. New strategies for anterior cruciate ligament partial rupture using bone marrow transplantation in rats. Stem Cells Dev. 2011;20:671–679.

    Article  CAS  PubMed  Google Scholar 

  46. Otterness IG, Eckstein F. Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight. Osteoarthritis Cartilage. 2007;15:666–672.

    Article  CAS  PubMed  Google Scholar 

  47. Paterno MV, Weed AM, Hewett TE. A between sex comparison of anterior-posterior knee laxity after anterior cruciate ligament reconstruction with patellar tendon or hamstrings autograft: a systematic review. Sports Med. 2012;42:135–152.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19:493–499.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Quatman CE, Kiapour AM, Demetropoulos CK, Kiapour A, Wordeman SC, Levine JW, Goel VK, Hewett TE. Preferential loading of the ACL compared with the MCL during landing: a novel in sim approach yields the multiplanar mechanism of dynamic valgus during ACL injuries. Am J Sports Med. 2014;42:177–186.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, Georgoulis T, Hewett TE, Johnson R, Krosshaug T, Mandelbaum B, Micheli L, Myklebust G, Roos E, Roos H, Schamasch P, Shultz S, Werner S, Wojtys E, Engebretsen L. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42:394–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ryan J, Magnussen RA, Cox CL, Hurbanek JG, Flanigan DC, Kaeding CC. ACL reconstruction: do outcomes differ by sex? A systematic review. J Bone Joint Surg Am. 2014;96:507–512.

    Article  PubMed  Google Scholar 

  52. Sebert SP, Lecannu G, Kozlowski F, Siliart B, Bard JM, Krempf M, Champ MM. Childhood obesity and insulin resistance in a Yucatan mini-piglet model: putative roles of IGF-1 and muscle PPARs in adipose tissue activity and development. Int J Obes (Lond). 2005;29:324–333.

    Article  CAS  Google Scholar 

  53. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH. Measurement of varus-valgus and internal-external rotational knee laxities in vivo: Part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res. 2007;25:989–996.

    Article  PubMed  Google Scholar 

  54. Stevenson H, Webster J, Johnson R, Beynnon B. Gender differences in knee injury epidemiology among competitive alpine ski racers. Iowa Orthop J. 1998;18:64–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Tosi LL, Boyan BD, Boskey AL. Does sex matter in musculoskeletal health? The influence of sex and gender on musculoskeletal health. J Bone Joint Surg Am. 2005;87:1631–1647.

    Article  PubMed  Google Scholar 

  56. van Dommelen JA, Jolandan MM, Ivarsson BJ, Millington SA, Raut M, Kerrigan JR, Crandall JR, Diduch DR. Pedestrian injuries: viscoelastic properties of human knee ligaments at high loading rates. Traffic Inj Prev. 2005;6:278–287.

    Article  PubMed  Google Scholar 

  57. Von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004;63:269–273.

    Article  Google Scholar 

  58. Vrooijink SH, Wolters F, Van Eck CF, Fu FH. Measurements of knee morphometrics using MRI and arthroscopy: a comparative study between ACL-injured and non-injured subjects. Knee Surg Sports Traumatol Arthrosc. 2011;19(suppl 1):S12–16.

    Article  PubMed  Google Scholar 

  59. Woo SL, Gomez MA, Seguchi Y, Endo CM, Akeson WH. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res. 1983;1:22–29.

    Article  CAS  PubMed  Google Scholar 

  60. Xerogeanes JW, Fox RJ, Takeda Y, Hyoung-Soo K, Ishibashi Y, Carlin GJ, Woo SL-Y. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann Biomed Engin. 1998;26:345–352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Patrick Vavken MD (Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School) and Benedikt Proffen MD (Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School) for helping with surgical procedures, Alison Biercevics BS (Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital) for assistance with MRI, and David Paller MS (Rhode Island Hospital Orthopaedic Foundation), Sarath Koruprolu BS (Rhode Island Hospital Orthopaedic Foundation), and Ryan Rich BS (Rhode Island Hospital Orthopaedic Foundation) for assistance with mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha M. Murray MD.

Additional information

Funding for this study was (MMM and BCF) received from the National Institutes of Health (RO1-AR054099 [MMM], AR056834 [BCF and MMM], and P20 GM104937 [BCF] [Bioengineering Core]) and the Lucy Lippitt Endowment.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research ® editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research ® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

Each author certifies that his or her institution approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at the Sports Medicine Research Laboratory, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA, and the Department of Orthopaedics, Rhode Island Hospital, Providence, RI, USA.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiapour, A.M., Shalvoy, M.R., Murray, M.M. et al. Validation of Porcine Knee as a Sex-specific Model to Study Human Anterior Cruciate Ligament Disorders. Clin Orthop Relat Res 473, 639–650 (2015). https://doi.org/10.1007/s11999-014-3974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3974-2

Keywords

Navigation