Skip to main content
Log in

Impact of various Mg(OH)\(_{2}\) morphologies on hydrophobicity, mechanical, and physical properties of polyurethane nanocomposite

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Polyurethane (PU) is one of the best polymer coatings due to its wide range of advantages such as easy fabrication, lightness, non-toxicity, durability, adhesion, flexibility, and strength. However, some of its drawbacks make it a suitable choice for the manufacturing of nanocomposites to enhance its properties. Hydrophobicity and flame retardancy are two of the most crucial characteristics of a polymer nanocoating. Magnesium hydroxide (MH), with its ability to be produced in a multitude of morphologies and exceptional properties, especially in flame retardancy, has always attracted the interest of researchers. One of the best methods for synthesizing high-purity, controlled-size, and controlled-shape nanoparticles is the hydrothermal technique. In this paper, magnesium chloride and sodium hydroxide were utilized as raw materials to synthesize four different morphologies of MH, such as plate, flake, spherical, and disk, functionalized using 3-Aminopropyl triethoxysilane (APTES). In the following, PU nanocomposites were fabricated by drop casting method including 3 % w.t. of different synthesized MH. The influence of each morphology on different properties of PU/Mg(OH)\(_{2}\) was then investigated using different analyses such as spectroscopy, mechanical, and hydrophobicity tests. The observations indicated that different surface topography would result from the presence of nanoparticles with various morphologies on the nanocomposite’s surface. Extremely high water contact angles were attained as a result of the surface roughness, revealing the super hydrophobic behavior of the produced nanocoatings. Also, the presence of MH in PU matrix improved the mechanical properties of the nanocomposite, depending on the aspect ratio and particle size.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang, Z, Du, J, Li, J, Huang, X, Kang, T, Zhang, C, Wang, S, Ajao, OO, Wang, W-J, Liu, P, “Polymer Nanocomposites with Aligned Two-Dimensional Materials.” Prog. Polym. Sci., 114 101360 (2021)

    Article  CAS  Google Scholar 

  2. Pavlidou, S, Papaspyrides, C, “A Review on Polymer-Layered Silicate Nanocomposites.” Prog. Polym. Sci., 33 (12) 119–1198 (2008)

    Article  CAS  Google Scholar 

  3. Kausar, A, “Strategies in Polymeric Nanoparticles and Hybrid Polymer Nanoparticles.” NanoWorld J., 5 (1) 1–5 (2019)

    Article  CAS  Google Scholar 

  4. Soucek, M, Zong, Z, Johnson, A, “Inorganic/Organic Nanocomposite Coatings: The Next Step in Coating Performance.” JCT Res., 3 (2) 133–140 (2006)

    CAS  Google Scholar 

  5. Kausar, A, “Polyurethane Composite Foams in High-Performance Applications: A Review.” Polym.-Plastics Technol. Eng., 57 (4) 346–369 (2018)

    Article  CAS  Google Scholar 

  6. Ji, M, Huang, J, Zhu, C, “Methods for Synthesizing Polymer Nanocomposites and Their Applications.” Funct. Nanomater. Synthesis, Properties, Appl., 447–490 (2022)

  7. Chattopadhyay, DK, Raju, K, “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32 (3) 352–418 (2007)

    Article  CAS  Google Scholar 

  8. Jing, Q, Liu, W, Pan, Y, Silberschmidt, VV, Li, L, Dong, Z, “Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites.” Mater. Design, 85 808–814 (2015)

    Article  CAS  Google Scholar 

  9. Suleman, S, Khan, SM, Gull, N, Aleem, W, Shafiq, M, Jamil, T, “A Comprehensive Short Review on Polyurethane Foam.” Int. J. Innov. Sci. Res., 12 165–169 (2014)

    Google Scholar 

  10. Kausar, A, “Polyurethane Nanocomposite Coatings: State of the Art and Perspectives.” Polym. Int., 67 (11) 1470–1477 (2018)

    Article  CAS  Google Scholar 

  11. Xiong, J, Zheng, Z, Qin, X, Li, M, Li, H, Wang, X, “The Thermal and Mechanical Properties of a Polyurethane/Multi-Walled Carbon Nanotube Composite.” Carbon, 44 (13) 2701–2707 (2006)

    Article  CAS  Google Scholar 

  12. Zia, F, Zia, KM, Aftab, W, Tabasum, S, Asrar, M, et al., “Synthesis and Characterization of Hydroxyethyl Cellulose Copolymer Modified Polyurethane Bionanocomposites.” Int. J. Biol. Macromol., 179 345–352 (2021)

    Article  CAS  Google Scholar 

  13. Allami, T, Alamiery, A, Nassir, MH, Kadhum, AH, “Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications.” Polymers, 13 (15) 2467 (2021)

    Article  CAS  Google Scholar 

  14. Ciecierska, E, Jurczyk-Kowalska, M, Bazarnik, P, Gloc, M, Kulesza, M, Kowalski, M, Krauze, S, Lewandowska, M, “Flammability, Mechanical Properties and Structure of Rigid Polyurethane Foams with Different Types of Carbon Reinforcing Materials.” Compos. Struct., 140 67–76 (2016)

    Article  Google Scholar 

  15. Subhani, T, Latif, M, Ahmad, I, Rakha, SA, Ali, N, Khurram, AA, “Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds.” Mater. Design, 87 436–444 (2015)

    Article  CAS  Google Scholar 

  16. Albozahid, M, Naji, HZ, Alobad, ZK, Saiani, A, “Enhanced Mechanical, Crystallisation and Thermal Properties of Graphene Flake-Filled Polyurethane Nanocomposites: The Impact of Thermal Treatment on the Resulting Microphase-Separated Structure.” J. Polym. Res., 28 (8) 1–16 (2021)

    Article  Google Scholar 

  17. Ma, Z, Li, Q, Wei, J, Liang, C, Yang, T, Wang, G, Xia, C, “Effects of Al-Based Alloy Powders on the Mechanical Behavior, Corrosion Resistance and Infrared Emissivity of Polyurethane Composite Coatings.” Coll. Surfaces A: Physicochem. Eng. Aspects, 624 126782 (2021)

    Article  CAS  Google Scholar 

  18. Maganty, S, Roma, MP, Meschter, SJ, Starkey, D, Gomez, M, Edwards, DG, Ekin, A, Elsken, K, Cho, J, “Enhanced Mechanical Properties of Polyurethane Composite Coatings Through Nanosilica Addition.” Prog. Org. Coat., 90 243–251 (2016)

    Article  CAS  Google Scholar 

  19. Chattopadhyay, D, Webster, DC, “Thermal Stability and Flame Retardancy of Polyurethanes.” Prog. Polym. Sci., 34 (10) 1068–1133 (2009)

    Article  CAS  Google Scholar 

  20. Mogha, A, “Clay and Carbon Nanotubes as the Potential Fillers for Polyurethanes for Flame-Retardant Coatings.” In: Materials and Chemistry of Flame-Retardant Polyurethanes Volume 2: Green Flame Retardants 2 pp. 31–45. ACS Publications, (2021)

  21. Peng, S, Iroh, JO, “Dependence of the Dynamic Mechanical Properties and Structure of Polyurethane-Clay Nanocomposites on the Weight Fraction of Clay.” J. Compos. Sci., 6 (6) 173 (2022)

    Article  CAS  Google Scholar 

  22. Skosana, SJ, Khoathane, C, Malwela, T, “Enhancing the Adhesion Strength of Polyurethane Coatings by Dispersing Layered Silicates via Sonication and High-Shear Mixing Method.” Polym. Bull., 78 (1) 203–221 (2021)

    Article  CAS  Google Scholar 

  23. Sitthisuwannakul, K, Boonpavanitchakul, K, Wirunmongkol, T, Muthitamongkol, P, Kangwansupamonkon, W, “A Tunable Controlled-Release Urea Fertilizer Coated with a Biodegradable Polyurethane-Nanoclay Composite Layer.” J. Coat. Technol. Res., 1–12 (2022)

  24. Huang, W, Huang, J, Yu, B, Meng, Y, Cao, X, Zhang, Q, Wu, W, Shi, D, Jiang, T, Li, RK, “Facile Preparation of Phosphorus Containing Hyperbranched Polysiloxane Grafted Graphene Oxide Hybrid Toward Simultaneously Enhanced Flame Retardancy and Smoke Suppression of Thermoplastic Polyurethane Nanocomposites.” Compos. Part A: Appl. Sci. Manufac., 150 106614 (2021)

    Article  CAS  Google Scholar 

  25. Awasthi, S, Agarwal, D, “Influence of Cycloaliphatic Compounds on the Properties of Polyurethane Coatings.” J. Coat. Technol. Res., 4 (1) 67–73 (2007)

    Article  CAS  Google Scholar 

  26. Naiker, VE., Mestry, S, Nirgude, T, Gadgeel, A, Mhaske, S, “Recent Developments in Phosphorous-Containing Bio-Based Flame-Retardant (FR) Materials for Coatings: An Attentive Review.” J. Coat. Technol. Res., 20, 113—139 (2023)

    Article  CAS  Google Scholar 

  27. Awad, MA, Saleh, N, Elsawy, M, Salem, SS, El-Wahab, A et al, “Preparation of Polyurethane Coating Formulation Based on Dihydropyridine Derivatives as an Insecticide and Antifungal Additives for Surface Coating Applications.” J. Coat. Technol. Res., 1–13 (2022)

  28. Zhang, J, Zhang, N, Liu, Q, Ren, H, Li, P, Yang, K, “Investigation of Hybrid Materials Based on Polyurethane Modified with Aliphatic Side Chains Combined with Nano-Tio2.”Aus. J. Chem., 71 (1) 47–57 (2017)

    Article  Google Scholar 

  29. Awais, M, Jalil, M, Zulfiqar, U, Husain, S, “A Facile Approach Towards Fabrication of Super Hydrophobic Surface from Functionalized Silica Particles.” In: IOP Conference Series: Materials Science and Engineering, 146 012022 (2016)

  30. Soleimani, E, Taheri, R, “ Synthesis and Surface Modification of Cuo Nanoparticles: Evaluation of Dispersion and Lipophilic Properties.” Nano-Struct. Nano-Objects, 10 167–175 (2017)

    Article  CAS  Google Scholar 

  31. Wang, Z, Liu, F, Han, E, Ke, W, Luo, S, “Effect of ZnO Nanoparticles on Anti-Aging Properties of Polyurethane Coating.” Chin. Sci. Bull., 54 (19) 3464–3472 (2009)

    Article  CAS  Google Scholar 

  32. El Saeed, AM, Abd El-Fattah, M, Azzam, AM, “Synthesis of ZnO Nanoparticles and Studying Its Influence on the Antimicrobial, Anticorrosion and Mechanical Behavior of Polyurethane Composite for Surface Coating.” Dyes and Pigments, 121 282–289 (2015)

    Article  Google Scholar 

  33. Bui, TMA, Nguyen, TV, Nguyen, TM, Hoang, TH, Nguyen, TTH, Lai, TH, Tran, TN, Hoang, VH, Le, TL, Dang, TC, et al. “Investigation of Crosslinking, Mechanical Properties and Weathering Stability of Acrylic Polyurethane Coating Reinforced by SiO2 Nanoparticles Issued from Rice Husk Ash.”Mater. Chem. Phys., 241 122445 (2020)

    Article  Google Scholar 

  34. Song, H-J, Zhang, Z-Z, Men, X-H, “The Tribological Behaviors of the Polyurethane Coating Filled with Nano-SiO2 Under Different Lubrication Conditions.” Compos. Part A: Appl. Sci. Manufac., 39 (2) 188–194 (2008)

    Article  Google Scholar 

  35. Nguyen, TV, Nguyen, TA, Dao, PH, Nguyen, AH., Do, MT, et al. “Effect of Rutile Titania Dioxide Nanoparticles on the Mechanical Property, Thermal Stability, Weathering Resistance and Antibacterial Property of Styrene Acrylic Polyurethane Coating.” Adv. Natural Sci. Nanosci. Nanotechnol., 7 (4) 045015 (2016)

    Article  Google Scholar 

  36. Sabzi, M, Mirabedini, S, Zohuriaan-Mehr, J, Atai, M, “Surface Modification of TiO2 Nano-Particles with Silane Coupling Agent and Investigation of its Effect on the Properties of Polyurethane Composite Coating.” Prog. Org. Coat., 65 (2) 222–228 (2009)

    Article  CAS  Google Scholar 

  37. Liu, S, Wei, X, Lin, S, Guo, M, “Preparation of Aerogel Mg(OH)2 Nanosheets by a Combined Sol-Gel-Hydrothermal Process and its Calcined mgo Towards Enhanced Degradation of Paraoxon Pollutants.” J. Sol-Gel Sci. Technol., 99 (1) 122–131 (2021)

    Article  CAS  Google Scholar 

  38. Chen, Y, Zhou, T, Fang, H, Li, S, Yao, Y, He, Y, “A Novel Preparation of Nano-Sized Hexagonal Mg(OH)2.” Proc. Eng., 102 388–394 (2015)

    Article  CAS  Google Scholar 

  39. Ding, Y, Zhang, G, Wu, H, Hai, B, Wang, L, Qian, Y, “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control Over Size, Shape, and Structure via Hydrothermal Synthesis.” Chem. Mater., 13 (2) 435–440 (2001)

    Article  CAS  Google Scholar 

  40. Feng, S-H, Li, G-H, “Hydrothermal and Solvothermal Syntheses.” In: Modern Inorganic Synthetic Chemistry, pp. 73–104. Elsevier, (2017)

  41. Sohrabi-Kashani, L, Yekta, BE, Rezaie, HR, Zolriasatein, A, “Synergistic Effect of Micro-and Nano-TiO2 on Hydrophobic, Mechanical, and Electrical Properties of Hybrid Polyurethane Composites.” J. Materi. Sci. Mater. Electron., 1–20 (2022)

  42. Seyedmehdi, S, Ebrahimi, M, “Superhydrophobic Modified-Polyurethane Coatings for Bushing of Power Transformers: From Material to Fabrication, Mechanical and Electrical Properties.” Prog. Org. Coat., 123 134–137 (2018)

    Article  CAS  Google Scholar 

  43. Yousefi, S, Ghasemi, B, “Ultrasound-assisted Synthesis of Porous Mg(OH)2 Nanostructures Using Hypersaline Brine.” Micro & Nano Lett., 14 (9) 1019–1023 (2019)

    Article  CAS  Google Scholar 

  44. Wu, H, Luo, B, Gao, C, Wang, L, Wang, Y, Zhang, Q, “Synthesis and Size Control of Monodisperse Magnesium Hydroxide Nanoparticles by Microemulsion Method.” J. Dispersion Sci. Technol., (2019)

  45. Erciyes, A, Andac, M, “Synthesis and Characterization of Nano-Sized Magnesium 1, 4-Benzenedicarboxylate Metal Organic Framework via Electrochemical Method.” J. Solid State Chem., 309 122970 (2022)

    Article  CAS  Google Scholar 

  46. Sharma, D, Ledwani, L, Kumar, N, Pervaiz, N, Mehrotra, T, Kumar, R, “Structural and Physicochemical Properties of Rheum Emodi Mediated Mg(OH)2 Nanoparticles and Their Antibacterial and Cytotoxic Potential.” IET Nanobiotechnol., 14 (9) 858–863 (2020)

    Article  Google Scholar 

  47. Yousefi, S, Ghasemi, B, “Mg(OH)2 Nanostructures Using Impure Brine: Optimization of Synthesis Parameters by Taguchi Robust Design and Study of Optical Properties.”Res. Chem. Intermediat., 47 (5) 2029–2047 (2021)

    Article  CAS  Google Scholar 

  48. Babar, M, Sharma, A, Kakkar, P, Arora, A, Arora, T, Verma, G, “Correlating Thermal Properties of Polyurethane/clay Nanocomposite Coatings with Processing.” Prog. Org. Coat., 165 106743 (2022)

    Article  CAS  Google Scholar 

  49. Sharma, A, Babar, M, Kakkar, P, Gahlout, P, Verma, G, “Correlating Mechanical Properties of Polyurethane-Organoclay Nanocomposite Coatings with Processing.” Prog. Org. Coat., 169 106895 (2022)

    Article  CAS  Google Scholar 

  50. Nayak, N, Huertas, R, Crespo, JG, Portugal, CA, “Surface Modification of Alumina Monolithic Columns with 3-Aminopropyltetraethoxysilane (APTES) for Protein Attachment.”Sep. Purif. Technol., 229 115674 (2019)

    Article  CAS  Google Scholar 

  51. Zahir, MH, Rahman, MM, Irshad, K, Rahman, MM, “Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol.” Nanomaterials, 9 (12) 1773 (2019)

    Article  CAS  Google Scholar 

  52. Zhang, M, Song, W, Chen, Q, Miao, B, He, W, “One-Pot Synthesis of Magnetic Ni@Mg(OH)2 Core-Shell Nanocomposites as a Recyclable Removal Agent for Heavy Metals”.ACS Appl. Materi. Interfaces, 7 (3) 1533–1540 (2015)

    Article  CAS  Google Scholar 

  53. Vafaeifard, M, Ibrahim, S, Wong, KT, Pasbakhsh, P, Pichiah, S, Choi, J, Yoon, Y, Jang, M, “Novel Self-Assembled 3d Flower-Like Magnesium Hydroxide Coated Granular Polyurethane: Implication of its Potential Application for the Removal of Heavy Metals.”J. Clean. Prod., 216 495–503 (2019)

    Article  CAS  Google Scholar 

  54. Akindoyo, JO, Beg, M, Ghazali, S, Islam, M, Jeyaratnam, N, Yuvaraj, A, “Polyurethane Types, Synthesis and Applications-A Review.” RSC Adv., 6 (115) 114453–114482 (2016)

    Article  CAS  Google Scholar 

  55. Pielichowski, K, Słotwińska, D, Dziwiński, E, “Segmented MDI/HMDI-Based Polyurethanes with Lowered Flammability.” J. Appl. Polym. Sci., 91 (5) 3214–3224 (2004)

    Article  Google Scholar 

  56. Barendregt, R, Van Den Berg, P, “The Degradation of Polyurethane.” Thermochimica Acta, 38 (2) 181–195 (1980)

    Article  CAS  Google Scholar 

  57. Semsarzadeh, M, Navarchian, A, “Effects of NCO/OH Ratio and Catalyst Concentration on Structure, Thermal Stability, and Crosslink Density of Poly (Urethane-Isocyanurate).” J. Appl. Polym. Sci., 90 (4) 963–972 (2003)

    Article  CAS  Google Scholar 

  58. Shamsi, R, Abdouss, M, Sadeghi, GMM, Taromi, FA, “Synthesis and Characterization of Novel Polyurethanes Based on Aminolysis of Poly (Ethylene Terephthalate) Wastes, and Evaluation of Their Thermal and Mechanical Properties.” Polym. Int., 58 (1) 22–30 (2009)

    Article  CAS  Google Scholar 

  59. Pegoretti, A, Dorigato, A, Brugnara, M, Penati, A, “Contact angle Measurements as a Tool to Investigate the Filler-Matrix Interactions in Polyurethane-Clay Nanocomposites from Blocked Prepolymer.” Eur. Polym. J., 44 (6) 1662–1672 (2008)

    Article  CAS  Google Scholar 

  60. Momen, G, Farzaneh, M, “Survey of Micro/Nano Filler Use to Improve Silicone Rubber for Outdoor Insulators.” Rev. Adv. Mater. Sci, 27 (1) 1–13 (2011)

    CAS  Google Scholar 

  61. Eshaghi, A, Aghaei, AA, “Transparent Hydrophobic Micro-Nano Silica-Silica Nano-Composite Thin Film with Environmental Durability.” Materi. Chem. Phys., 227 318–323 (2019)

    Article  CAS  Google Scholar 

  62. Hejazi, I, Seyfi, J, Sadeghi, GMM, Jafari, SH, Khonakdar, HA, Drechsler, A, Davachi, SM, “Investigating the Interrelationship of Superhydrophobicity with Surface Morphology, Topography and Chemical Composition in Spray-Coated Polyurethane/Silica Nanocomposites.” Polymer, 128 108–118 (2017)

    Article  CAS  Google Scholar 

  63. Villegas, M, Zhang, Y, Abu Jarad, N, Soleymani, L, Didar, TF, “Liquid-Infused Surfaces: A Review of Theory, Design, and Applications.” ACS Nano, 13 (8) 8517–8536 (2019)

    Article  CAS  Google Scholar 

  64. Verma, G, Kaushik, A, Ghosh, AK, “Nano-Interfaces Between Clay Platelets and Polyurethane Hard Segments in Spray Coated Automotive Nanocomposites.” Prog. Org. Coat., 99 282–294 (2016)

    Article  CAS  Google Scholar 

  65. Przybyszewski, B, Boczkowska, A, Kozera, R, Mora, J, Garcia, P, Aguero, A, Borras, A, “Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings.” Coatings, 9 (12) 811 (2019)

    Article  CAS  Google Scholar 

  66. Simpson, JT, Hunte, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Progr. Phys., 78 (8) 086501 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahim Naghizadeh or Carola Esposito Corcione.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at the 17th Coatings Science International Conference on June 27–30, 2022, in Noordwijk, the Netherlands.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabimashhadi, Z., Naghizadeh, R., Zolriasatein, A. et al. Impact of various Mg(OH)\(_{2}\) morphologies on hydrophobicity, mechanical, and physical properties of polyurethane nanocomposite. J Coat Technol Res 20, 1815–1834 (2023). https://doi.org/10.1007/s11998-023-00797-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00797-0

Keywords

Navigation