Skip to main content
Log in

Multinozzle electrospray method for high-throughput and uniform coating: Application of superhydrophobic coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Electrospraying is an effective method of producing functional layers on substrates. By means of electrospraying, it is possible to create uniform and fine droplets that attract to the substrate without being blown away by the electric field formed by the nozzle and the substrate. The uniformity of the coated layer is rarely affected by a fluid drying process (such as Marangoni flow on substrates) as the size of droplets can reach micron/nano-levels and the solvents in the droplets can evaporate quickly. Therefore, the electrospray process is often referred to as ‘dry deposition.’ However, when an electrospray system with multinozzles is considered for the faster process of producing large substrates, the drying process may be completely different than for a single-nozzle system. In addition, crosstalk and nonuniform spray volume from each nozzle can pose an additional problem that needs to be addressed. In this study, we proposed a multinozzle electrospray system and process to average the spray amount heterogeneity and achieve layer uniformity in a fast-drying process. Finally, we demonstrated the effectiveness of our proposed methods by fabricating superhydrophobic layers on a highly insulating substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. De La Mora, JF, Loscertales, IG, “The Current Emitted by Highly Conducting Taylor Cones.” J. Fluid Mech., 260 155–184. https://doi.org/10.1017/S0022112094003472 (1994)

    Article  Google Scholar 

  2. Rulison, AJ, Flagan, RC, “Electrospray Atomization of Electrolytic Solutions.” J. Colloid Interface Sci., 167 (1) 135–145. https://doi.org/10.1006/jcis.1994.1341 (1994)

    Article  CAS  Google Scholar 

  3. Gañán-Calvo, AM, “Cone-Jet Analytical Extension of Taylor’s Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying.” Phys. Rev. Lett., 79 (2) 217–220. https://doi.org/10.1103/PhysRevLett.79.217 (1997)

    Article  Google Scholar 

  4. Cloupeau, M, Prunet-Foch, B, “Electrostatic Spraying of Liquids in Cone-Jet Mode.” J. Electrost., 22 (2) 135–159. https://doi.org/10.1016/0304-3886(89)90081-8 (1989)

    Article  CAS  Google Scholar 

  5. Griss, P, Melin, J, Sjödahl, J, Roeraade, J, Stemme, G, “Development of Micromachined Hollow Tips for Protein Analysis Based on Nanoelectrospray Ionization Mass Spectrometry.” J. Micromech. Microeng., 12 (5) 682. https://doi.org/10.1088/0960-1317/12/5/326 (2002)

    Article  CAS  Google Scholar 

  6. Jaworek, A, “Micro- and Nanoparticle Production by Electrospraying.” Powder Technol., 176 (1) 18–35. https://doi.org/10.1016/j.powtec.2007.01.035 (2007)

    Article  CAS  Google Scholar 

  7. Domnick J, Ye Q, “The Electrostatic Spray Painting Process with High-Speed Rotary Bell Atomizers: Influences of Operating Conditions and Target Geometries.” In: 9th Int. Conference on Liquid Atomization and Spray Systems (p. 11). Sorrento, Italy (2003). Retrieved from http://publica.fraunhofer.de/documents/N-18294.html

  8. Li, X, Huang, J, Edirisinghe, M, “Novel Patterning of Nano-Bioceramics: Template-Assisted Electrohydrodynamic Atomization Spraying.” J. Royal Soc. Interface, 5 (19) 253–257. https://doi.org/10.1098/rsif.2007.1162 (2008)

    Article  CAS  Google Scholar 

  9. Gañán-Calvo, AM, Dávila, J, Barrero, A, “Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws.” J. Aerosol Sci., 28 (2) 249–275. https://doi.org/10.1016/S0021-8502(96)00433-8 (1997)

    Article  Google Scholar 

  10. Lin, L, Liu, M, Chen, L, Chen, P, Ma, J, Han, D, Jiang, L, “Bio-Inspired Hierarchical Macromolecule-Nanoclay Hydrogels for Robust Underwater Superoleophobicity.” Adv. Mater., 22 (43) 4826–4830. https://doi.org/10.1002/adma.201002192 (2010)

    Article  CAS  Google Scholar 

  11. Choi, K-H, Rahman, K, Khan, A, Kim, D-S, “Cross-Talk Effect in Electrostatic Based Capillary Array Nozzles.” J. Mech. Sci. Technol., 25 (12) 3053–3062. https://doi.org/10.1007/s12206-011-0903-0 (2011)

    Article  Google Scholar 

  12. Parhizkar, M, Reardon, PJT, Knowles, JC, Browning, RJ, Stride, E, Pedley, RB, Edirisinghe, M, “Performance of Novel High Throughput Multi Electrospray Systems for Forming of Polymeric Micro/Nanoparticles.” Mater. Des., 126 73–84. https://doi.org/10.1016/j.matdes.2017.04.029 (2017)

    Article  CAS  Google Scholar 

  13. Rulison, AJ, Flagan, RC, “Scale-up of Electrospray Atomization Using Linear Arrays of Taylor Cones.” Rev. Sci. Instrum., 64 (3) 683–686. https://doi.org/10.1063/1.1144197 (1993)

    Article  CAS  Google Scholar 

  14. Quang Tran, SB, Byun, D, Nguyen, VD, Yudistira, HT, Yu, MJ, Lee, KH, Kim, JU, “Polymer-Based Electrospray Device with Multiple Nozzles to Minimize End Effect Phenomenon.” J. Electrostat., 68 (2) 138–144. https://doi.org/10.1016/j.elstat.2009.11.011 (2010)

    Article  CAS  Google Scholar 

  15. Lojewski, B, Yang, W, Duan, H, Xu, C, Deng, W, “Design, Fabrication, and Characterization of Linear Multiplexed Electrospray Atomizers Micro-Machined from Metal and Polymers.” Aerosol Sci. Technol., 47 (2) 146–152. https://doi.org/10.1080/02786826.2012.734936 (2013)

    Article  CAS  Google Scholar 

  16. Bocanegra, R, Galán, D, Márquez, M, Loscertales, IG, Barrero, A, “Multiple Electrosprays Emitted from an Array of Holes.” J. Aerosol Sci., 36 (12) 1387–1399. https://doi.org/10.1016/j.jaerosci.2005.04.003 (2005)

    Article  CAS  Google Scholar 

  17. Duby, M-H, Deng, W, Kim, K, Gomez, T, Gomez, A, “Stabilization of Monodisperse Electrosprays in the Multi-Jet Mode via Electric Field Enhancement.” J. Aerosol Sci., 37 (3) 306–322. https://doi.org/10.1016/j.jaerosci.2005.05.013 (2006)

    Article  CAS  Google Scholar 

  18. Oh, H, Kim, K, Kim, S, “Characterization of Deposition Patterns Produced by Twin-Nozzle Electrospray.” J. Aerosol Sci., 39 (9) 801–813. https://doi.org/10.1016/j.jaerosci.2008.05.003 (2008)

    Article  CAS  Google Scholar 

  19. Lenguito, G, Fernandez Garcia, J, Fernandez de la Mora, J, Gomez, A, “Multiplexed Electrospray for Space Propulsion Applications.” In: Proceedings of 46th AIAA Joint Propulsion Conference, AIAA (p. 6521) (2010). https://doi.org/10.2514/6.2010-6521

  20. Almería, B, Deng, W, Fahmy, TM, Gomez, A, “Controlling the Morphology of Electrospray-Generated PLGA Microparticles for Drug Delivery.” J. Colloid Interface Sci., 343 (1) 125–133. https://doi.org/10.1016/j.jcis.2009.10.002 (2010)

    Article  CAS  Google Scholar 

  21. Deng, W, Gomez, A, “Influence of Space Charge on the Scale-Up of Multiplexed Electrosprays.” J. Aerosol Sci.https://doi.org/10.1016/j.jaerosci.2007.08.005 (2007)

    Article  Google Scholar 

  22. Tang, K, Gomez, A, “On the Structure of an Electrostatic Spray of Monodisperse Droplets.” Phys. Fluids, 6 2317–2332. https://doi.org/10.1063/1.868182 (1994)

    Article  Google Scholar 

  23. Jia, W, Kharraz, JA, Choi, PJ, Guo, J, Deka, BJ, An, AK, “Superhydrophobic Membrane by Hierarchically Structured PDMS-POSS Electrospray Coating with Cauliflower-Shaped Beads for Enhanced MD Performance.” J. Membr. Sci., 597 117638. https://doi.org/10.1016/j.memsci.2019.117638 (2020)

    Article  CAS  Google Scholar 

  24. Kim, EK, Lee, CS, Kim, SS, “Superhydrophobicity of Electrospray-Synthesized Fluorinated Silica Layers.” J. Colloid Interface Sci., 368 (1) 599–602. https://doi.org/10.1016/j.jcis.2011.11.047 (2012)

    Article  CAS  Google Scholar 

  25. Park, J, Hwang, J, “Fabrication of a Flexible Ag-grid Transparent Electrode Using AC Based Electrohydrodynamic Jet Printing.” J. Phys. D Appl. Phys., 47 (40) 405102. https://doi.org/10.1088/0022-3727/47/40/405102 (2014)

    Article  CAS  Google Scholar 

  26. Wei, C, Qin, H, Ramírez-Iglesias, NA, Chiu, C-P, Lee, Y, Dong, J, “High-Resolution AC-Pulse Modulated Electrohydrodynamic Jet Printing on Highly Insulating Substrates.” J. Micromech. Microeng., 24 (4) 045010. https://doi.org/10.1088/0960-1317/24/4/045010 (2014)

    Article  CAS  Google Scholar 

  27. Kim, B, Kim, I, Joo, SW, Lim, G, “Electrohydrodynamic Repulsion of Droplets Falling on an Insulating Substrate in an Electric Field.” Appl. Phys. Lett., 95 (20) 204106. https://doi.org/10.1063/1.3262946 (2009)

    Article  CAS  Google Scholar 

  28. Rahman, MK, Phung, TH, Oh, S, Kim, SH, Ng, TN, Kwon, K-S, “High-Efficiency Electrospray Deposition Method for Nonconductive Substrates: Applications of Superhydrophobic Coatings.” ACS Appl. Mater. Interfaces, 13 (15) 18227–18236. https://doi.org/10.1021/acsami.0c22867 (2021)

    Article  CAS  Google Scholar 

  29. Manju, MB, Vignesh, S, Nikhil, KS, Sharaj, AP, Murthy, M, “Electrical Conductivity Studies of Glass Fiber Reinforced Polymer Composites.” Mater. Today Proc., 5 (1) 3229–3236. https://doi.org/10.1016/j.matpr.2018.02.027 (2018)

    Article  CAS  Google Scholar 

  30. Panteny, S, Stevens, R, Bowen, CR, “The Frequency Dependent Permittivity and AC Conductivity of Random Electrical Networks.” Ferroelectrics, 319 (1) 199–208. https://doi.org/10.1080/00150190590965884 (2005)

    Article  CAS  Google Scholar 

  31. Yoon, H, Kim, H, Latthe, SS, Kim, M, Al-Deyab, S, Yoon, SS, “A Highly Transparent Self-Cleaning Superhydrophobic Surface by Organosilane-Coated Alumina Particles Deposited via Electrospraying.” J. Mater. Chem. A, 3 (21) 11403–11410. https://doi.org/10.1039/C5TA02226F (2015)

    Article  CAS  Google Scholar 

  32. Taylor, GI, “Disintegration of Water Drops in an Electric Field.” In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280 (1382) 383–397 (1964). https://doi.org/10.1098/rspa.1964.0151

  33. Gao, J, Austin, DE, “Mechanistic Investigation of Charge Separation in Electrospray Ionization using Microparticles to Record Droplet Charge State.” J. Am. Soc. Mass Spectr., 31 (10) 2044–2052. https://doi.org/10.1021/jasms.0c00122 (2020)

    Article  CAS  Google Scholar 

  34. Rayleigh, Lord, “On the Equilibrium of Liquid Conducting Masses Charged with Electricity.” London, Edinburgh Dublin Philosophical Magazine J. Sci., 14 (87) 184–186. https://doi.org/10.1080/14786448208628425 (1882)

    Article  Google Scholar 

  35. Sharma, B, Takamura, Y, Shimoda, T, Biyani, M, “A Bulk Sub-Femtoliter In Vitro Compartmentalization System Using Super-Fine Electrosprays.” Scientific Rep., 6 (1) 26257. https://doi.org/10.1038/srep26257 (2016)

    Article  CAS  Google Scholar 

  36. Merrill, MH, “Large-Scale Electrospray Ionization Methods for Nanocoating Application.” Volume 12: Processing and Engineering Applications of Novel Materials (pp. 177–186). ASMEDC (2010). https://doi.org/10.1115/IMECE2010-38799

  37. Kaynak, A, Mehmood, T, Dai, X, Magniez, K, Kouzani, A, “Study of Radio Frequency Plasma Treatment of PVDF Film Using Ar, O2 and (Ar + O2) Gases for Improved Polypyrrole Adhesion.” Materials, 6 (8) 3482–3493. https://doi.org/10.3390/ma6083482 (2013)

    Article  Google Scholar 

  38. Asghar, AH, Galaly, AR, “The Effect of Oxygen Admixture with Argon Discharges on the Impact Parameters of Atmospheric Pressure Plasma Jet Characteristics.” Appl. Sci., 11 (15) 6870. https://doi.org/10.3390/app11156870 (2021)

    Article  CAS  Google Scholar 

  39. Boel, E, Koekoekx, R, Dedroog, S, Babkin, I, Vetrano, MR, Clasen, C, Van den Mooter, G, “Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying.” Pharmaceutics, 12 (7) 625. https://doi.org/10.3390/pharmaceutics12070625 (2020)

    Article  CAS  Google Scholar 

  40. Sadek, C, Schuck, P, Fallourd, Y, Pradeau, N, Le Floch-Fouéré, C, Jeantet, R, “Drying of a Single Droplet to Investigate Process–Structure–Function Relationships: A Review.” Dairy Sci. Technol., 95 (6) 771–794. https://doi.org/10.1007/s13594-014-0186-1 (2015)

    Article  Google Scholar 

  41. Kwon, K-S, Rahman, MK, Phung, TH, Hoath, S, Jeong, S, Kim, JS, “Review of Digital Printing Technologies for Electronic Materials.” Flex. Printed Electron., 5 43003. https://doi.org/10.1088/2058-8585/abc8ca (2020)

    Article  CAS  Google Scholar 

  42. Zhi, D, Lu, Y, Sathasivam, S, Parkin, IP, Zhang, X, “Large-Scale Fabrication of Translucent and Repairable Superhydrophobic Spray Coatings with Remarkable Mechanical, Chemical Durability and UV Resistance.” J. Mater. Chem. A, 5 (21) 10622–10631. https://doi.org/10.1039/C7TA02488F (2017)

    Article  CAS  Google Scholar 

  43. Guo, Z, Liu, W, Su, B-L, “Superhydrophobic Surfaces: From Natural to Biomimetic to Functional.” J. Colloid Interface Sci., 353 (2) 335–355. https://doi.org/10.1016/j.jcis.2010.08.047 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K. S. Kwon acknowledges support from Next-generation Intelligence semi-conductor R&D Program (No. 20016130) through the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Korea government (MOTIE). K.S. Kwon acknowledges partial support from the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education (2022R1F1A1060165). This work was also partially supported by the Soonchunhyang University Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

MAM performed the experiment and prepared the manuscript. KSH performed the experiment. KSK supervised the whole experimental work and prepared the manuscript.

Corresponding author

Correspondence to Kye-Si Kwon.

Ethics declarations

Conflict of interest

Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 60788 KB)

Supplementary file2 (MP4 90646 KB)

Supplementary file3 (MP4 50211 KB)

Supplementary file4 (MP4 29004 KB)

Supplementary file5 (MP4 10440 KB)

Supplementary file6 (MP4 9846 KB)

Supplementary file7 (DOCX 3898 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosa, M.A., Kim, S.H. & Kwon, KS. Multinozzle electrospray method for high-throughput and uniform coating: Application of superhydrophobic coating. J Coat Technol Res 20, 1069–1081 (2023). https://doi.org/10.1007/s11998-022-00725-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00725-8

Keywords

Navigation