Skip to main content

Electrospun Superhydrophobic Self-Cleaning Materials

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8. doi:10.1007/s004250050096

    Article  Google Scholar 

  2. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677. doi:10.1006/anbo.1997.0400

    Article  Google Scholar 

  3. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860. doi:10.1002/adma.200290020

    Article  Google Scholar 

  4. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519. doi:10.1021/la036369u

    Article  Google Scholar 

  5. Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213. doi:10.1021/la048629t

    Article  Google Scholar 

  6. Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2(7):457–460. doi:10.1038/nmat924

    Article  Google Scholar 

  7. Li XM, Reinhoudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36(8):1350–1368. doi:10.1039/b602486f

    Article  Google Scholar 

  8. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6(5):510–530. doi:10.1016/j.nantod.2011.08.004

    Article  Google Scholar 

  9. Sun TL, Feng L, Gao XF, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652. doi:10.1021/ar040224c

    Article  Google Scholar 

  10. Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858. doi:10.1002/adma.200800836

    Article  Google Scholar 

  11. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on − CF3 alignment. Langmuir 15(13):4321–4323. doi:10.1021/la981727s

    Google Scholar 

  12. Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38(1):71–99. doi:10.1146/annurev.matsci.38.060407.132434

    Article  Google Scholar 

  13. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611):1377–1380. doi:10.1126/science.1078365

    Article  Google Scholar 

  14. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622. doi:10.1126/science.1148326

    Article  Google Scholar 

  15. Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25(14):2071–2076. doi:10.1002/adma.201204520

    Article  Google Scholar 

  16. Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370. doi:10.1002/smll.200900445

    Article  Google Scholar 

  17. Ma M, Hill RM, Rutledge GC (2008) A review of recent results on superhydrophobic materials based on micro- and nanofibers. J Adhes Sci Technol 22(15):1799–1817. doi:10.1163/156856108x319980

    Article  Google Scholar 

  18. Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem A 1(6):1929–1946. doi:10.1039/c2ta00189

    Article  Google Scholar 

  19. Lin J, Wang X, Ding B, Yu J, Sun G, Wang M (2012) Biomimicry via electrospinning. Crit Rev Solid State Mater Sci 37(2):94–114. doi:10.1080/10408436.2011.627096

    Article  Google Scholar 

  20. Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21(36):3621–3638. doi:10.1002/adma.200803645

    Article  Google Scholar 

  21. Zhang J, Wang J, Zhao Y, Xu L, Gao X, Zheng Y, Jiang L (2008) How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? Soft Matter 4(11):2232–2237. doi:10.1039/b807857b

    Article  Google Scholar 

  22. Jiang L, Zhao Y, Zhai J (2004) A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem 116(33):4438–4441. doi:10.1002/ange.200460333

    Article  Google Scholar 

  23. Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L (2006) Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Adv Funct Mater 16(4):568–574. doi:10.1002/adfm.200500624

    Article  Google Scholar 

  24. Ma ML, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC (2005) Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21(12):5549–5554. doi:10.1021/la047064y

    Article  Google Scholar 

  25. Yoon H, Park JH, Kim GH (2010) A superhydrophobic surface fabricated by an electrostatic process. Macromol Rapid Commun 31(16):1435–1439. doi:10.1002/marc.201000131

    Article  Google Scholar 

  26. Lin J, Cai Y, Wang X, Ding B, Yu J, Wang M (2011) Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale 3(3):1258–1262. doi:10.1039/C0NR00812E, 10.1039/C0NR00812E#_blank#Link to landing page via DOI

    Google Scholar 

  27. Kang M, Jung R, Kim H-S, Jin H-J (2008) Preparation of superhydrophobic polystyrene membranes by electrospinning. Colloids Surf A Physicochem Eng Asp 313–314:411–414, doi: http://dx.doi.org/10.1016/j.colsurfa.2007.04.122

    Article  Google Scholar 

  28. Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, Yu J, Sun G (2011) Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv 1(8):1482–1488. doi:10.1039/c1ra00605c

    Article  Google Scholar 

  29. Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172(6):1103–1112. doi:10.1016/j.plantsci.2007.03.005

    Article  Google Scholar 

  30. Yasuhiro M, Bin D, Seimei S (2006) Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning. Nanotechnology 17(20):5151. doi:10.1088/0957-4484/17/20/019

    Article  Google Scholar 

  31. Li X, Ding B, Lin J, Yu J, Sun G (2009) Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J Phys Chem C 113(47):20452–20457. doi:10.1021/jp9076933

    Article  Google Scholar 

  32. Han D, Steckl AJ (2009) Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25(16):9454–9462. doi:10.1021/la900660v

    Article  Google Scholar 

  33. Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432(7013):36. doi:10.1038/432036a

    Article  Google Scholar 

  34. Feng XQ, Gao X, Wu Z, Jiang L, Zheng QS (2007) Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23(9):4892–4896. doi:10.1021/la063039b

    Article  Google Scholar 

  35. Xue Y, Wang H, Yu D, Feng L, Dai L, Wang X, Lin T (2009) Superhydrophobic electrospun POSS-PMMA copolymer fibres with highly ordered nanofibrillar and surface structures. ChemCommun (42):6418–6420. doi:10.1039/B911509A, 10.1039/B911509A#_blank#Link to landing page via DOI

  36. Wu H, Zhang R, Sun Y, Lin D, Sun Z, Pan W, Downs P (2008) Biomimetic nanofiber patterns with controlled wettability. Soft Matter 4(12):2429–2433. doi:10.1039/B805570J, 10.1039/B805570J#_blank#Link to landing page via DOI

    Google Scholar 

  37. Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE (2008) Robust omniphobic surfaces. Proc Natl Acad Sci 105(47):18200–18205. doi:10.1073/pnas.0804872105

    Article  Google Scholar 

  38. Jeong S, Lee Y, Lee J, Shin Y, Shin H, Lim Y, Nho Y (2008) Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-g-poly(L-lactide-co-ε-caprolactone) nanofibers. Macromol Res 16(2):139–148. doi:10.1007/bf03218843

    Article  Google Scholar 

  39. Tian Y, Chen C-Y, Yip H-L, Wu W-C, Chen W-C, Jen AKY (2009) Synthesis, nanostructure, functionality, and application of polyfluorene-block-poly(N-isopropylacrylamide)s. Macromolecules 43(1):282–291. doi:10.1021/ma9019619

    Article  Google Scholar 

  40. Wang N, Zhao Y, Jiang L (2008) Low-cost, thermoresponsive wettability of surfaces: poly(N-isopropylacrylamide)/polystyrene composite films prepared by electrospinning. Macromol Rapid Commun 29(6):485–489. doi:10.1002/marc.200700785

    Article  Google Scholar 

  41. Muthiah P, Hoppe SM, Boyle TJ, Sigmund W (2011) Thermally tunable surface wettability of electrospun fiber mats: polystyrene/poly(N-isopropylacrylamide) blended versus crosslinked poly[(N-isopropylacrylamide)-co-(methacrylic acid)]. Macromol Rapid Commun 32(21):1716–1721. doi:10.1002/marc.201100373

    Article  Google Scholar 

  42. Webster M, Miao J, Lynch B, Green DS, Jones-Sawyer R, Linhardt RJ, Mendenhall J (2012) Tunable thermo-responsive poly(N-vinylcaprolactam) cellulose nanofibers: synthesis, characterization, and fabrication. Macromol Mater Eng 298(4):447–453. doi:10.1002/mame.201200081

    Article  Google Scholar 

  43. Chen M, Besenbacher F (2011) Light-driven wettability changes on a photoresponsive electrospun mat. ACS Nano 5(2):1549–1555. doi:10.1021/nn103577g

    Article  Google Scholar 

  44. Chen M, Dong M, Havelund R, Regina VR, Meyer RL, Besenbacher F, Kingshott P (2010) Thermo-responsive core − sheath electrospun nanofibers from poly (N-isopropylacrylamide)/polycaprolactone blends. Chem Mater 22(14):4214–4221. doi:10.1021/cm100753r

    Article  Google Scholar 

  45. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces 4(6):3207–3212. doi:10.1021/am300544d

    Article  Google Scholar 

  46. Cho WK, Choi IS (2008) Fabrication of hairy polymeric films inspired by geckos: wetting and high adhesion properties. Adv Funct Mater 18(7):1089–1096. doi:10.1002/adfm.200701454

    Article  Google Scholar 

  47. Winkleman A, Gotesman G, Yoffe A, Naaman R (2008) Immobilizing a drop of water: fabricating highly hydrophobic surfaces that pin water droplets. Nano Lett 8(4):1241–1245. doi:10.1021/nl080317d

    Article  Google Scholar 

  48. Zhu S, Li Y, Zhang J, Lü C, Dai X, Jia F, Gao H, Yang B (2010) Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity. J Colloid Interface Sci 344(2):541–546, doi: http://dx.doi.org/10.1016/j.jcis.2009.12.047

    Article  Google Scholar 

  49. Gong G, Wu J, Liu J, Sun N, Zhao Y, Jiang L (2012) Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability. J Mater Chem 22:8257–8262. doi:10.1039/c2jm16503a

    Article  Google Scholar 

  50. Ma ML, Mao Y, Gupta M, Gleason KK, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23):9742–9748. doi:10.1021/ma0511189

    Article  Google Scholar 

  51. Pisuchpen T, Chaim-ngoen N, Intasanta N, Supaphol P, Hoven VP (2011) Tuning hydrophobicity and water adhesion by electrospinning and silanization. Langmuir 27(7):3654–3661. doi:10.1021/la104978e

    Article  Google Scholar 

  52. Lim J-M, Yi G-R, Moon JH, Heo C-J, Yang S-M (2007) Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir 23(15):7981–7989. doi:10.1021/la700392w

    Article  Google Scholar 

  53. Pant HR, Pandeya DR, Nam KT, W-I B, Hong ST, Kim HY (2011) Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater 189(1–2):465–471. doi:10.1016/j.jhazmat.2011.02.062

    Article  Google Scholar 

  54. Chang Z (2011) “Firecracker-shaped” ZnO/polyimide hybrid nanofibers via electrospinning and hydrothermal process. Chem Commun 47(15):4427–4429. doi:10.1039/c0cc05634k

    Article  Google Scholar 

  55. Sheikh FA, Barakat NAM, Kanjwal MA, Chaudhari AA, Jung IH, Lee JH, Kim HY (2009) Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol Res 17(9):688–696. doi:10.1007/BF03218929

    Article  Google Scholar 

  56. Tang H, Wang H, He J (2009) Superhydrophobic titania membranes of different adhesive forces fabricated by electrospinning. J Phys Chem C 113(32):14220–14224. doi:10.1021/jp904221f

    Article  Google Scholar 

  57. Bedford NM, Steckl AJ (2010) Photocatalytic self cleaning textile fibers by coaxial electrospinning. ACS Appl Mater Interfaces 2(8):2448–2455. doi:10.1021/am1005089

    Article  Google Scholar 

  58. Grignard B, Vaillant A, de Coninck J, Piens M, Jonas AM, Detrembleur C, Jerome C (2011) Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates. Langmuir 27(1):335–342. doi:10.1021/la102808w

    Article  Google Scholar 

  59. Viswanadam G, Chase GG (2013) Water-diesel secondary dispersion separation using superhydrophobic tubes of nanofibers. Sep Purif Technol 104:81–88. doi:10.1016/j.seppur.2012.11.020

    Article  Google Scholar 

  60. Wang L, Yang S, Wang J, Wang C, Chen L (2011) Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route. Mater Lett 65(5):869–872, doi: http://dx.doi.org/10.1016/j.matlet.2010.12.024

    Article  Google Scholar 

  61. Yohe ST, Colson YL, Grinstaff MW (2012) Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates. J Am Chem Soc 134(4):2016–2019. doi:10.1021/ja211148a

    Article  Google Scholar 

  62. Yohe ST, Herrera VLM, Colson YL, Grinstaff MW (2012) 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. J Control Release 162(1):92–101. doi:10.1016/j.jconrel.2012.05.047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y., Wang, N. (2014). Electrospun Superhydrophobic Self-Cleaning Materials. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_18

Download citation

Publish with us

Policies and ethics