Skip to main content

Advertisement

Log in

Biocompatible superhydrophobic coating material for biomedical applications

  • ORIGINAL PAPER: SOL-GEL AND HYBRID MATERIALS FOR BIOLOGICAL AND HEALTH (MEDICAL) APPLICATIONS
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Biomaterials and wettability have played a crucial role in the biocompatibility with a host matrix of body fluid and cells. We discuss designing superhydrophobic biomaterials for novel applications such as temporally implant, contact lenses, controlled drug release coatings, coating on medical instruments, etc. Such Superhydrophobic coating surfaces were created with the simple dip coating method by single step base catalyst sol-gel method. Methyltriethoxysilane/trimethoxymethylsilane-based deposition at different dip periods introduces interesting properties in the region, including superhydrophobicity, biocompatibility and transparency. This works reveal the impact of interaction bone marrow mesenchymal stem cells and surface free energy on the biocompatibility of superhydrophobic biomaterial.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee Y, Park S, Kim K, Lee J (2007) Adv Mater 19:2330–2335

    Article  Google Scholar 

  2. Langer R, Tirrell DA (2004) Nature 428:487–491

    Article  Google Scholar 

  3. Jeri AH, Jonas DM, Michael FR (2002) Nater Mater 1:59–63

    Article  Google Scholar 

  4. Whitesides GM (2006) Nature 442:368–373

    Article  Google Scholar 

  5. Blossey R (2003) Nat Mater 2:301–306

    Article  Google Scholar 

  6. Li K, Ju J, Gao S, Jiang L (2013) Nat Commun 4:2276–2283

    Google Scholar 

  7. Chen Z, Hao L, Chen C (2012) Colloids Surf A 1:1–7

    Article  Google Scholar 

  8. Langer R, Tirrell DA (2004) Nature 428:487–492

  9. Hou X, Wang X, Zhu Q, Bao J, Mao C, Jiang L, Shen J (2010) Colloids Surf B 80:247–250

    Article  Google Scholar 

  10. Xu LC, Siedlecki CA (2007) Biomaterials 28:3273–3283

    Article  Google Scholar 

  11. Mahadik SA, Rao AV (2010) Appl Surf Sci 257:333–339

    Article  Google Scholar 

  12. Nimittrakoolchai O, Supothina S (2008) Macromol Symp 264:73–79

    Article  Google Scholar 

  13. Gu ZZ, Uetsuka H, Takahashi K, Nakajima R, Onishi H, Fujishima A, Sato O (2003) Angew Chem Int Ed 42:894–897

    Article  Google Scholar 

  14. Ge H, Song Y, Jiang L, Zhu D (2006) Thin Solid Films 515:1539–1543

    Article  Google Scholar 

  15. Sun TL, Tan H, Han D, Fu Q, Jiang L (2005) Small 10:959–963

    Article  Google Scholar 

  16. Khorasani MT, Mirzadeh H (2004) J Appl Polym Sci 91:2042–2047

    Article  Google Scholar 

  17. Oliveira SM, Song W, Alves NM, Mano JF (2011) Soft Matter 7:8932–8941

    Article  Google Scholar 

  18. Shi J, Alves NM, Mano JF (2008) Bioinspir Biomim 3:034003–034010

    Article  Google Scholar 

  19. Song W, Veiga DD, Mano JF (2009) Adv Mater 21:1830–1834

    Article  Google Scholar 

  20. Alves NM, Shi J, Oramas E, Santos JL, Toma SH, Mano JF (2009) J Biomed Mater Res Part A 91A:480–488

    Article  Google Scholar 

  21. Ishizaki T, Saito N, Takai O (2010) Langmuir 26:8147–8154

    Article  Google Scholar 

  22. Mahadik SA, Vhatkar RS, Wagh PB (2013) Appl Surf Sci 277:67–72

    Article  Google Scholar 

  23. Lourenço BN, Marchioli G, Song W, Mano JF (2012) Biointerphases 7:1–4

    Article  Google Scholar 

  24. Good RJ (1992) J Adhes Sci Technol 6:1269–1302

    Article  Google Scholar 

  25. Kubiak KJ, Wilson MCT, Mathia TG (2011) Ph Carval Wear 271:523–528

    Article  Google Scholar 

  26. Schmidt P, Bellot-Gurlet L, Slodczyk A, Fröhlich F (2012) Phys Chem Miner 39(6):455–464

    Article  Google Scholar 

  27. Mahadik SA, Pedraza F, vhatkar RS (2016) J Alloys Compd 663:487–493

    Article  Google Scholar 

  28. Mahadik SA, Rao AV (2012) J Sol-Gel Sci Technol 62:490–494

    Article  Google Scholar 

  29. Mahadik SA, Pedraza F, Hegade ND, Wagh PB (2013) J Colloid Interface Sci 405:262–268

    Article  Google Scholar 

  30. Mahadik SA, Rao AV (2012) J Sol-Gel Sci Technol 63:580–586

    Article  Google Scholar 

  31. Mahadik SA, Pedraza F (2016) J Sol-Gel Sci Technol 78:475–481

    Article  Google Scholar 

  32. Jagadale PN, Bamane SR (2013) Mater Sci-Poland 31:269–275

    Article  Google Scholar 

  33. Krasteva NA, Toromanov G, Hristova KT (2010) J Phys Conf Ser 253:012079–012085

    Google Scholar 

  34. Garretta TR, Bhakoob M, Zhanga Z, (2008) Prog. Nat Sci 18:1049–1056

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the department of physics, Shivaji University Kolhapur, India for providing the experimental facility under the DST phases-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish A. Mahadik.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadik, S.A., Pedraza, F., Mahadik, S. et al. Biocompatible superhydrophobic coating material for biomedical applications. J Sol-Gel Sci Technol 81, 791–796 (2017). https://doi.org/10.1007/s10971-016-4244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4244-4

Keywords

Navigation