Skip to main content
Log in

Steering and in situ monitoring of drying phenomena during film fabrication

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

During film fabrication, the phenomena of crack formation and delamination are often observed, dramatically hindering the discovery and characterization of new materials for energy applications. In this work, we report on a novel approach to fully steer the drying parameters or “knobs” that are commonly used during electrode manufacture. It allows us to precisely in situ control and monitor the solvent-specific evaporation rates that affect the development of suspension composition during drying. We managed to control the capillary stress inside the layer by precisely controlling the selectivity of solvent evaporation. Large cracks result when the surface tension increases over time and layer delamination occurs. When using an n-propanol/water system, critical crack formation is achieved when water is enriched by decreasing the gas exchange during drying or preloading the gas phase with water vapor. High gas exchange rates inhibit the water’s enrichment, and therefore, only small surface cracks develop. The experiments also surprisingly indicate that the drying temperature has no significant effect on crack formation. These results are of fundamental meaning for the future development of electrodes as the drying step has a high impact on the products specification and now can be ultimately controlled. The future development of electrodes will surely benefit from this achievement in the controlled fabrication of films for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kloke, A, von Stetten, F, Zengerle, R, Kerzenmacher, S, “Strategies for the Fabrication of Porous Platinum Electrodes.” Adv. Mater., 23 (43) 4976 (2011). https://doi.org/10.1002/adma.201102182

    Article  Google Scholar 

  2. Shimoda, T, Matsuki, Y, Furusawa, M, Aoki, T, Yudasaka, I, Tanaka, H, Iwasawa, H, Wang, D, Miyasaka, M, Takeuchi, Y, “Solution-Processed Silicon Films Transistors.” Nat. Lett., 440 (6) 783 (2006). https://doi.org/10.1103/PhysRevLett.98.218302

    Article  Google Scholar 

  3. He, B, Yang, S, Qin, Z, Wen, B, Zhang, C, “The Roles of Wettability and Surface Tension in Droplet Formation During Inkjet Printing.” Sci. Rep., 7 11841 (2017). https://doi.org/10.1038/s41598-017-12189-7

    Article  Google Scholar 

  4. Lu, Y, Ganguli, R, Drewien, CA, Anderson, MT, Brinker, CJ, Gong, W, Guo, Y, Soyez, H, Dunn, B, Huang, MH, Zink, JI, “Continuous Formation of Supported Cubic and Hexagonal Mesoporous Films by Sol–Gel Dip-Coating.” Nature, 389 364–368 (1997). https://doi.org/10.1103/PhysRevLett.98.218302

    Article  Google Scholar 

  5. Jones, D, Vak, D, Weerasinghe, H, Ramamurthy, J, Brown, M, Subbiah, J, “Reverse Gravure Coating for Roll-to-Roll Production of Organic Photovoltaics.” Sol. Energy Mater. Sol. Cells, 149 154–161 (2016). https://doi.org/10.1016/j.solmat.2016.01.015

    Article  Google Scholar 

  6. Sandström, A, Dam, HF, Krebs, FC, Edman, L, “Ambient Fabrication of Flexible and Large-Area Organic Light-Emitting Devices Using Slot-Die Coating.” Nat. Commun., 3 1002 (2012). https://doi.org/10.1038/ncomms2002

    Article  Google Scholar 

  7. Pierre, A, Sadeghi, M, Payne, MM, Facchetti, A, Anthony, JE, Arias, AC, “All-Printed Flexible Organic Transistors Enabled by Surface Tension-Guided Blade Coating.” Adv. Mater., 26 (32) 5722–5727 (2014). https://doi.org/10.1002/adma.201401520

    Article  Google Scholar 

  8. Singh, KB, Tirumkudulu, MS, “Cracking in Drying Colloidal Films.” Phys. Rev. Lett., 98 (21) 218302 (2007). https://doi.org/10.1103/PhysRevLett.98.218302

    Article  Google Scholar 

  9. Ouyang, L, Wei, B, Kuo, C-C, Pathak, S, Farrell, B, Martin, DC, “Enhanced PEDOT Adhesion on Solid Substrates with Electrografted P(EDOT-NH2).” Sci. Adv., 3 (3) e1600448 (2017). https://doi.org/10.1126/sciadv.1600448

    Article  Google Scholar 

  10. Pandey, A, Scheel, JD, Schumacher, J, “Turbulent Superstructures in Rayleigh–Bénard Convection.” Nat. Commun., 9 2118 (2018). https://doi.org/10.1038/s41467-018-04478-0

    Article  Google Scholar 

  11. Scriven, LE, Sternling, CV, “The Marangoni Effects.” Nature, 187 186–188 (1960). https://doi.org/10.1038/187186a0

    Article  Google Scholar 

  12. Staehler, M, Friedrich, I, “Statistical Investigations of Basis Weight and Thickness Distribution of Continuously Produced Fuel Cell Electrodes.” J. Power Sources, 242 425–437 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.073

    Article  Google Scholar 

  13. Liu, Y, Zhao, J, Li, Z, Mu, C, Ma, W, Hu, H, Jiang, K, Lin, H, Ade, H, Yan, H, “Aggregation and Morphology Control Enables Cases of High Efficiency Polymer Solar Cells.” Nat. Commun., 5 5293 (2014). https://doi.org/10.1038/ncomms6293

    Article  Google Scholar 

  14. Oosterhout, SD, Wienk, MM, van Bavel, SS, Thiedmann, R, Koster, LJA, Gilot, J, Loos, J, Schmidt, V, Janssen, RAL, “The Effect of Three-Dimensional Morphology on the Efficiency of Hybrid Polymer Solar Cells.” Adv. Mater., 8 (14–15) 1434–1449 (2009). https://doi.org/10.1002/adma.200802854

    Google Scholar 

  15. Peckham, TJ, Holdcraft, S, “Structure–Morphology–Property Relationships of Non-perfluorinated Proton-Conducting Membranes.” Adv. Mater., 22 (42) 4667–4690 (2010). https://doi.org/10.1002/adma.201001164

    Article  Google Scholar 

  16. Schaaf, P, Voegel, J-C, Jierry, L, Boulmedais, F, “Spray-Assisted Polyelectrolyte Multilayer Buildup: From Step-by-Step to Single-Step Polyelectrolyte Film Constructions.” Adv. Mater., 24 (8) 1001–1016 (2010). https://doi.org/10.1002/adma.201001164

    Article  Google Scholar 

  17. Schmidt-Hansberg, B, Colsmann, H, Lemmer, U, Schabel, W, “Drying oft Thin Film Polymer Solar Cells.” Eur. Phys. J. Spec. Top., 166 49 (2009). https://doi.org/10.1140/epjst/e2009-00877-y

    Article  Google Scholar 

  18. Font, F, Protas, B, Richardson, G, Foster, J, “Binder Migration During Drying of Lithium-Ion Battery Electrodes: Modelling and Comparison to Experiment.” J. Power Sources, 393 177–185 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.097

    Article  Google Scholar 

  19. Calín-Sánchez, A, Kharaghani, A, Lech, K, Figiel, A, Carbonell-Barrachina, AA, Tsotsas, E, “Drying Kinetics and Microstructural and SensoryProperties of Black Chokeberry (Aronia melanocarpa) as Affected by Drying Method.” Food Bioprocess Technol., 8 (1) 66–74 (2015). https://doi.org/10.1007/s11947-014-1383-x

    Article  Google Scholar 

  20. Thurner, F, Schlueder, EU, “Wet-Bulb Temperature of Binary Mixtures.” Chem. Eng. Process., 19 337–343 (1985). https://doi.org/10.1016/0255-2701(85)85006-6

    Article  Google Scholar 

  21. Riede, T, Schluender, EU, “Selective Evaporation of a Binary Mixture Into Dry or Humidified Air.” Chem. Eng. Process., 27 (2) 83–93 (1990). https://doi.org/10.1016/0255-2701(90)85012-S

    Article  Google Scholar 

  22. Brown, GL, “Formation of Films from Polymer Dispersions.” J. Polym. Sci., 22 423–434 (1956). https://doi.org/10.1002/pol.1956.1202210208

    Article  Google Scholar 

  23. Martinez, CJ, Lewis, JA, “Shape Evolution and Stress Development during Latex Silica Film Formation.” Langmuir, 18 4689–4698 (2002). https://doi.org/10.1021/la0114833

    Article  Google Scholar 

  24. Price, KK, Wu, Y, McCormick, AV, Francis, LF, “Stress Development in Hard Particle Coatings in the Absence of Lateral Drying.” J. Am. Ceram. Soc., 98 (7) 2214–2222 (2015). https://doi.org/10.1111/jace.13580

    Article  Google Scholar 

  25. Tang, CS, Cui, YJ, Tang, AM, Shi, B, “Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils.” Eng. Geol., 114 (3–4) 261–266 (2010). https://doi.org/10.1016/j.enggeo.2010.05.003

    Article  Google Scholar 

  26. Tirumkudulu, MS, “Cracking in Drying Latex Films.” Langmuir, 21 4938–4948 (2005). https://doi.org/10.1021/la048298k

    Article  Google Scholar 

  27. Chiu, RC, Cima, MJ, “Drying of Granular Ceramic Films: II, Drying Stress and Saturation Uniformity.” J. Am. Ceram. Soc., 76 (11) 2769–2777 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04014.x

    Article  Google Scholar 

  28. Bauer, C, Cima, M, “Stress Development During Drying of Aqueous Zirconia Based Tape Casting Slurries Measured by Transparent Substrate Deflection Method.” J. Am. Ceram. Soc., 92 (6) 1178–1185 (2009). https://doi.org/10.1111/j.1551-2916.2009.03000.x

    Article  Google Scholar 

  29. Chiu, RC, Garino, TJ, Cima, MJ, “Drying of Granular Ceramic Films: II, Effect of Processing Variables on Cracking Behavior.” J. Am. Ceram. Soc., 76 (9) 2257–2264 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb07762.x

    Article  Google Scholar 

  30. Xu, P, Mujumdar, AS, Yu, B, “Drying-Induced Cracks in Thin Film Fabrication from Colloidal Dispersions.” Dry. Technol., 27 (5) 636–652 (2009). https://doi.org/10.1080/07373930902820804

    Article  Google Scholar 

  31. Caddock, BD, Hull, D, “Influence of Humidity on the Cracking Patterns Formed During the Drying of Sol–Gel Drops.” J. Mater. Sci., 37 (4) 825–834 (2002). https://doi.org/10.1023/A:1013808402289

    Article  Google Scholar 

  32. Tsushima, S, Hirai, S, “An Overview of Cracks and Interfacial Voids in Membrane Electrode Assemblies in Polymer Electrolyte Fuel Cells.” J. Therm. Sci. Technol., 10 (1) JTST0002 (2015). https://doi.org/10.1299/jtst.2015jtst0002

    Article  Google Scholar 

  33. Komada, Y, Okabayashi, K, Nishimura, H, Hiromitsu, M, Oboshi, T, Usui, H, “Dependence of Polymer Electrolyte Fuel Cell Performance on Preparation Conditions of Slurry for Catalyst Layers.” J. Power Sources, 193 (2) 488–494 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.015

    Article  Google Scholar 

  34. Schonert, M, Jakoby, K, Schluhmbohm, C, Gluesen, A, Mergel, J, Stolten, D, “Manufacture of Robust Catalyst Layers for the DMFC.” Fuel Cells, 4 (3) 175–179 (2004). https://doi.org/10.1002/fuce.200400027

    Article  Google Scholar 

  35. Dixit, MB, Harkey, BA, Shen, F, Hatzell, KB, “Catalyst Layer Ink Interactions That Affect Coatability.” J Electrochem. Soc., 165 (5) 264–271 (2018). https://doi.org/10.1149/2.0191805jes

    Article  Google Scholar 

  36. Huang, DC, Yu, PJ, Liu, FJ, Huang, SL, Hsueh, KL, Chen, YC, Wu, CH, Chang, WC, Tsau, FH, “Effect of Dispersion Solvent in Catalyst Ink on Proton Exchange Membrane Fuel Cell Performance.” Int. J. Electrochem. Sci., 6 (7) 2551–2565 (2011)

    Google Scholar 

  37. Scheepers, F, Staehler, A, Staehler, M, Carmo, M, Lehnert, W, Stolten, D, “Layer Formation from Polymer Carbon-Black Dispersions.” Coatings, 8 (12) 450 (2018). https://doi.org/10.3390/coatings8120450

    Article  Google Scholar 

  38. Burdzik, A, Staehler, M, Friedrich, I, Carmo, M, Stolten, D, “Homogeneity Analysis of Square Meter-Sized Electrodes for PEM Electrolysis and PEM Fuel Cells.” J. Coat. Technol. Res., 15 (6), 1423–1432 (2018). https://doi.org/10.1007/s11998-018-0074-3

    Article  Google Scholar 

  39. Scheepers, F, Burdzik, A, Staehler, M, Carmo, M, Lehnert, W, Stolten, D, “A New Setup for the Quantitative Analysis of Drying by the Use of Gas Phase FTIR-Spectroscopy.” Rev. Sci. Instrum., 89 083102 (2018). https://doi.org/10.1063/1.5036817

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (42-6521a/15/5) for the joint projects within the framework of the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) of Forschungszentrum Jülich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Scheepers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheepers, F., Stähler, A., Stähler, M. et al. Steering and in situ monitoring of drying phenomena during film fabrication. J Coat Technol Res 16, 1213–1221 (2019). https://doi.org/10.1007/s11998-019-00206-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00206-5

Keywords

Navigation