Skip to main content
Log in

PAN ultrafiltration membranes grafted with natural amino acids for improving antifouling property

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this report, antifouling polyacrylonitrile (PAN) ultrafiltration membranes were prepared from blends of PAN/polyglycidyl methacrylate (PGMA) via phase inversion method followed by the grafting of natural amino acids through epoxy ring-opening reaction. The grafted PAN membranes possessed highly stable hydrophilic surfaces as a result of the grafting of amino acids, which was adequately demonstrated in attenuated total reflectance–Fourier transform infrared spectroscopy (ATR/FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of tensile strength and scanning electron microscopy (SEM) images further proved that the surface modification had little effect on their mechanical properties, surface, and cross-sectional morphologies. Meanwhile, remarkable resistance against bovine serum albumin (BSA) and lysozyme (Lyz) fouling was observed for the neutral amino acid-based PAN membranes due to the formation of zwitterionic hydration layer on the membrane surface, while PAN membranes grafted with charged amino acids were able to prohibit the approach of like charged proteins with reduced deposition and provide the driving force for oppositely charged protein adsorption. Furthermore, the ultrafiltration and antifouling performance of PAN membranes were investigated by BSA filtration experiments. Compared with the pristine PAN membrane, all the modified PAN membranes exhibited higher pure water flux, better flux recovery ratio, lower rejection, less total permeation resistance, and preferable stability, having potential applications in protein separation and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Echavarría, AP, Torras, C, Pagán, J, Ibarz, A, “Fruit Juice Processing and Membrane Technology Application.” Food Eng. Rev., 3 (3–4) 136–158 (2011)

    Article  Google Scholar 

  2. Tang, X, Flint, SH, Bennett, RJ, Brooks, JD, “The Efficacy of Different Cleaners and Sanitisers in Cleaning Biofilms on UF Membranes Used in the Dairy Industry.” J. Membr. Sci., 352 (1) 71–75 (2010)

    Article  Google Scholar 

  3. Van Reis, R, Zydney, A, “Membrane Separations in Biotechnology.” Curr. Opin. Biotechnol., 12 (2) 208–211 (2001)

    Article  Google Scholar 

  4. Christy, C, Vermant, S, “The State-of-the-Art of Filtration in Recovery Processes for Biopharmaceutical Production.” Desalination, 147 (1–3) 1–4 (2002)

    Article  Google Scholar 

  5. Van Der Bruggen, B, Vandecasteele, C, Van Gestel, T, Doyen, W, Leysen, R, “A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production.” Environ. Prog., 22 (1) 46–56 (2003)

    Article  Google Scholar 

  6. Gander, M, Jefferson, B, Judd, S, “Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost Considerations.” Sep. Purif. Technol., 18 (2) 119–130 (2000)

    Article  Google Scholar 

  7. Yuliwati, E, Ismail, AF, Matsuura, T, Kassim, MA, Abdullah, MS, “Effect of Modified PVDF Hollow Fiber Submerged Ultrafiltration Membrane for Refinery Wastewater Treatment.” Desalination, 283 214–220 (2011)

    Article  Google Scholar 

  8. Van Hoof, S, Hashim, A, Kordes, AJ, “The Effect of Ultrafiltration as Pretreatment to Reverse Osmosis in Wastewater Reuse and Seawater Desalination Applications.” Desalination, 124 (1) 231–242 (1999)

    Article  Google Scholar 

  9. Clever, M, Jordt, F, Knauf, R, Räbiger, N, Rüdebusch, M, Hilker-Scheibel, R, “Process Water Production from River Water by Ultrafiltration and Reverse Osmosis.” Desalination, 131 (1–3) 325–336 (2000)

    Article  Google Scholar 

  10. Ma, W, Zhao, Y, Wang, L, “The Pretreatment with Enhanced Coagulation and a UF Membrane for Seawater Desalination with Reverse Osmosis.” Desalination, 203 (1–3) 256–259 (2007)

    Article  Google Scholar 

  11. Charcosset, C, “Membrane Processes in Biotechnology: An Overview.” Biotechnol. Adv., 24 (5) 482–492 (2006)

    Article  Google Scholar 

  12. Chen, X, Su, Y, Shen, F, Wan, Y, “Antifouling Ultrafiltration Membranes Made from PAN-b-PEG Copolymers: Effect of Copolymer Composition and PEG Chain Length.” J. Membr. Sci., 384 (1) 44–51 (2011)

    Article  Google Scholar 

  13. Lohokare, HR, Muthu, MR, Agarwal, GP, Kharul, UK, “Effective Arsenic Removal Using Polyacrylonitrile-Based Ultrafiltration (UF) Membrane.” J. Membr. Sci., 320 (1) 159–166 (2008)

    Article  Google Scholar 

  14. Wang, ZG, Wan, LS, Xu, ZK, “Surface Engineerings of Polyacrylonitrile-Based Asymmetric Membranes Towards Biomedical Applications: An Overview.” J. Membr. Sci., 304 (1) 8–23 (2007)

    Article  Google Scholar 

  15. Barroso, T, Temtem, M, Casimiro, T, Aguiar-Ricardo, A, “Antifouling Performance of Poly (acrylonitrile)-Based membranes: From Green Synthesis to Application.” J. Supercrit. Fluids., 56 (3) 312–321 (2011)

    Article  Google Scholar 

  16. Nie, F-Q, Xu, Z-K, Huang, X-J, Ye, P, Wu, J, “Acrylonitrile-Based Copolymer Membranes Containing Reactive Groups: Surface Modification by the Immobilization of Poly (ethylene glycol) for Improving Antifouling Property and Biocompatibility.” Langmuir, 19 (23) 9889–9895 (2003)

    Article  Google Scholar 

  17. Xu, J, Feng, X, Chen, P, Gao, C, “Development of an Antibacterial Copper (II)-Chelated Polyacrylonitrile Ultrafiltration Membrane.” J. Membr. Sci., 413 62–69 (2012)

    Article  Google Scholar 

  18. Lim, J-W, Lee, J-M, Yun, S-M, Park, B-J, Lee, Y-S, “Hydrophilic Modification of Polyacrylonitrile Membranes by Oxyfluorination.” J. Ind. Eng. Chem., 15 (6) 876–882 (2009)

    Article  Google Scholar 

  19. Wang, L, Su, Y-L, Zheng, L, Chen, W, Jiang, Z, “Highly Efficient Antifouling Ultrafiltration Membranes Incorporating Zwitterionic Poly ([3-(Methacryloylamino) Propyl]-Dimethyl (3-Sulfopropyl) Ammonium Hydroxide).” J. Membr. Sci., 340 (1) 164–170 (2009)

    Article  Google Scholar 

  20. Asatekin, A, Kang, S, Elimelech, M, Mayes, AM, “Anti-fouling Ultrafiltration Membranes Containing Polyacrylonitrile-Graft-Poly (Ethylene Oxide) Comb Copolymer Additives.” J. Membr. Sci., 298 (1) 136–146 (2007)

    Article  Google Scholar 

  21. Jung, B, “Preparation of Hydrophilic Polyacrylonitrile Blend Membranes for Ultrafiltration.” J. Membr. Sci., 229 (1) 129–136 (2004)

    Article  Google Scholar 

  22. Miyano, T, Matsuura, T, Carlsson, DJ, Sourirajan, S, “Retention of Polyvinylpyrrolidone Swelling Agent in the Poly (Ether p-Phenylenesulfone) Ultrafiltration Membrane.” J. Appl. Polym. Sci., 41 (1–2) 407–417 (1990)

    Article  Google Scholar 

  23. Miyano, T, Matsuura, T, Sourirajan, S, “Effect of Polyvinylpyrrolidone Additive on the Pore Size and the Pore Size Distribution of Polyethersulfone (Victrex) Membranes.” Chem. Eng. Commun., 119 (1) 23–39 (1993)

    Article  Google Scholar 

  24. Wang, T, Wang, Y-Q, Su, Y-L, Jiang, Z-Y, “Antifouling Ultrafiltration Membrane Composed of Polyethersulfone and Sulfobetaine Copolymer.” J. Membr. Sci., 280 (1) 343–350 (2006)

    Article  Google Scholar 

  25. Rana, D, Matsuura, T, Narbaitz, R-M, Feng, C, “Development and Characterization of Novel Hydrophilic Surface Modifying Macromolecule for Polymeric Membranes.” J. Membr. Sci., 249 (1) 103–112 (2005)

    Article  Google Scholar 

  26. Yi, Z, Zhu, L-P, Xu, Y-Y, Zhao, Y-F, Ma, X-T, Zhu, B-K, “Polysulfone-Based Amphiphilic Polymer for Hydrophilicity and Fouling-Resistant Modification of Polyethersulfone Membranes.” J. Membr. Sci., 365 (1) 25–33 (2010)

    Article  Google Scholar 

  27. Zhang, C, Bai, Y, Sun, Y, Gu, J, Xu, Y, “Preparation of Hydrophilic HDPE Porous Membranes via Thermally Induced Phase Separation by Blending of Amphiphilic PE-b-PEG Copolymer.” J. Membr. Sci., 365 (1) 216–224 (2010)

    Article  Google Scholar 

  28. Kim, JH, Kim, CK, “Ultrafiltration Membranes Prepared from Blends of Polyethersulfone and Poly (1-Vinylpyrrolidone-co-Styrene) Copolymers.” J. Membr. Sci., 262 (1) 60–68 (2005)

    Article  Google Scholar 

  29. Dai, Z-W, Wan, L-S, Xu, Z-K, “Surface Glycosylation of Polyacrylonitrile Ultrafiltration Membrane to Improve Its Anti-fouling Performance.” J. Membr. Sci., 325 (1) 479–485 (2008)

    Article  Google Scholar 

  30. Zhao, X, Su, Y, Chen, W, Peng, J, Jiang, Z, “Grafting Perfluoroalkyl Groups onto Polyacrylonitrile Membrane Surface for Improved Fouling Release Property.” J. Membr. Sci., 415 824–834 (2012)

    Article  Google Scholar 

  31. Masuelli, MA, Grasselli, M, Marchese, J, Ochoa, NA, “Preparation, Structural and Functional Characterization of Modified Porous PVDF Membranes by γ-Irradiation.” J. Membr. Sci., 389 91–98 (2012)

    Article  Google Scholar 

  32. Kattan, M, El-Nesr, E, “γ-Radiation-induced Graft Copolymerization of Acrylic Acid onto Poly (ethylene terephthalate) Films: A Study by Thermal Analysis.” J. Appl. Polym. Sci., 102 (1) 198–203 (2006)

    Article  Google Scholar 

  33. Shim, JK, Na, HS, Lee, YM, Huh, H, Nho, YC, “Surface Modification of Polypropylene Membranes by γ-ray Induced Graft Copolymerization and Their Solute Permeation Characteristics.” J. Membr. Sci., 190 (2) 215–226 (2001)

    Article  Google Scholar 

  34. Yu, H-Y, Zhou, J, Gu, J-S, Yang, S, “Manipulating Membrane Permeability and Protein Rejection of UV-Modified Polypropylene Macroporous Membrane.” J. Membr. Sci., 364 (1) 203–210 (2010)

    Article  Google Scholar 

  35. Rahimpour, A, Madaeni, SS, Zereshki, S, Mansourpanah, Y, “Preparation and Characterization of Modified Nano-porous PVDF Membrane with High Antifouling Property Using UV Photo-Grafting.” Appl. Surf. Sci., 255 (16) 7455–7461 (2009)

    Article  Google Scholar 

  36. Taniguchi, M, Belfort, G, “Low Protein Fouling Synthetic Membranes by UV-Assisted Surface Grafting Modification: Varying Monomer Type.” J. Membr. Sci., 231 (1) 147–157 (2004)

    Article  Google Scholar 

  37. Ulbricht, M, Belfort, G, “Surface Modification of Ultrafiltration Membranes by Low Temperature Plasma II. Graft Polymerization onto Polyacrylonitrile and Polysulfone.” J. Membr. Sci., 111 (2) 193–215 (1996)

    Article  Google Scholar 

  38. Wavhal, DS, Fisher, ER, “Membrane Surface Modification by Plasma-Induced Polymerization of Acrylamide for Improved Surface Properties and Reduced Protein Fouling.” Langmuir., 19 (1) 79–85 (2003)

    Article  Google Scholar 

  39. Liu, F, Du, C-H, Zhu, B-K, Xu, Y-Y, “Surface Immobilization of Polymer Brushes onto Porous Poly (Vinylidene Fluoride) Membrane by Electron Beam to Improve the Hydrophilicity and Fouling Resistance.” Polymer, 48 (10) 2910–2918 (2007)

    Article  Google Scholar 

  40. Liu, F, Zhu, B-K, Xu, Y-Y, “Improving the Hydrophilicity of Poly (Vinylidene fluoride) Porous Membranes by Electron Beam Initiated Surface Grafting of AA/SSS Binary Monomers.” Appl. Surf. Sci., 253 (4) 2096–2101 (2006)

    Article  Google Scholar 

  41. Meng, H, Cheng, Q, Li, C, “Polyacrylonitrile-Based Zwitterionic Ultrafiltration Membrane with Improved Anti-protein-fouling Capacity.” Appl. Surf. Sci., 303 399–405 (2014)

    Article  Google Scholar 

  42. Shi, Q, Su, Y-L, Chen, W-J, Peng, J-M, Nie, L-Y, Zhang, L, Jiang, Z-Y, “Grafting Short-Chain Amino Acids onto Membrane Surfaces to Resist Protein Fouling.” J. Membr. Sci., 366 (1) 398–404 (2011)

    Article  Google Scholar 

  43. Murphy, EF, Lu, JR, Brewer, J, Russell, J, Penfold, J, “The Reduced Adsorption of Proteins at the Phosphoryl Choline Incorporated Polymer—Water Interface.” Langmuir, 15 (4) 1313–1322 (1999)

    Article  Google Scholar 

  44. Liu, Q-S, Singh, A, Liu, L-Y, “Amino Acid-Based Zwitterionic Poly (Serine Methacrylate) as an Antifouling Material.” Biomacromolecules, 14 (1) 226–231 (2012)

    Article  Google Scholar 

  45. Zhi, X-L, Li, P-F, Gan, X-C, Zhang, W-W, Shen, T-J, Yuan, J, Shen, J, “Hemocompatibility and Anti-Biofouling Property Improvement of Poly (Ethylene Terephthalate) via Self-polymerization of Dopamine and Covalent Graft of Lysine.” J. Biomater. Sci. Polym. Ed., 25 (14–15) 1619–1628 (2014)

    Article  Google Scholar 

  46. Rosen, JE, Gu, F-X, “Surface Functionalization of Silica Nanoparticles with Cysteine: A Low-Fouling Zwitterionic Surface.” Langmuir, 27 (17) 10507–10513 (2011)

    Article  Google Scholar 

  47. Azari, S, Zou, L, “Fouling Resistant Zwitterionic Surface Modification of Reverse Osmosis Membranes Using Amino Acid L-Cysteine.” Desalination, 324 79–86 (2013)

    Article  Google Scholar 

  48. Hadidi, M, Zydney, AL, “Fouling Behavior of Zwitterionic Membranes: Impact of Electrostatic and Hydrophobic Interactions.” J. Membr. Sci., 452 97–103 (2014)

    Article  Google Scholar 

  49. Xu, C, Liu, X-J, Xie, B-B, Yao, C, Hu, W-H, Li, Y, Li, X, “Preparation of PES Ultrafiltration Membranes with Natural Amino Acids Based Zwitterionic Antifouling Surfaces.” Appl. Surf. Sci., 385 130–138 (2016)

    Article  Google Scholar 

  50. Su, Y, Li, C, Zhao, W, Shi, Q, Wang, H, Jiang, Z, Zhu, S, “Modification of Polyethersulfone Ultrafiltration Membranes with Phosphorylcholine Copolymer can Remarkably Improve the Antifouling and Permeation Properties.” J. Membr. Sci., 322 (1) 171–177 (2008)

    Article  Google Scholar 

  51. Zhang, G, Yan, H, Ji, S, Liu, Z, “Self-assembly of Polyelectrolyte Multilayer Pervaporation Membranes by a Dynamic Layer-by-Layer Technique on a Hydrolyzed Polyacrylonitrile Ultrafiltration Membrane.” J. Membr. Sci., 292 (1) 1–8 (2007)

    Article  Google Scholar 

  52. Oh, NW, Jegal, J, Lee, KH, “Preparation and Characterization of Nanofiltration Composite Membranes Using Polyacrylonitrile (PAN). I. Preparation and Modification of PAN Supports.” J. Appl. Polymer. Sci., 80 (10) 1854–1862 (2001)

    Article  Google Scholar 

  53. Lohokare, HR, Muthu, MR, Agarwal, GP, Kharul, UK, “Effective Arsenic Removal Using Polyacrylonitrile-Based Ultrafiltration (UF) Membrane.” J. Membr. Sci., 320 (1) 159–166 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project 51373034 and 50903016), the Department of Science & Technology of Jiangsu Province, China (Projects BA2013037 and BY2015070-11), and the Fundamental Research Fund (Southeast University 2242016K40081). It is also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, C., Xie, B. et al. PAN ultrafiltration membranes grafted with natural amino acids for improving antifouling property. J Coat Technol Res 15, 403–414 (2018). https://doi.org/10.1007/s11998-017-9995-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-9995-5

Keywords

Navigation