Skip to main content
Log in

3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Currently, atomic force microscopy is the preferred technique to determine roughness on membrane surfaces. In this paper, a new method to measure surface roughness is presented using a 3D laser scanning confocal microscope for high-resolution topographic analysis and is compared to conventional SEM. For this study, the surfaces of eight samples based on a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) host polymer with different liquid interpenetrating components were analyzed. Polymethylhydrosiloxane, triethylene glycolallylmethylether, (3,3,3-trifluoropropyl)methylcyclotrisiloxane (D3-C2H4CF3), polysiloxane-comb-propyloxymethoxytriglycol (PSx), polysiloxane-comb-propyl-3,3,3-trifluoro (PSx-C2H4CF3), poly[bis(2-(2-methoxyethoxy) ethoxy) phosphazene, or poly[bis(trifluoro)ethoxy] phosphazene was chosen as interpenetrating compound to investigate the impact of comb and double-comb-structured polymer backbones, as well as their dipolar or fluorous residues on the PVDF-HFP-miscibility. Different phases of the constituting ingredients were identified via their thermal properties determined by DSC. Additionally, the COSMO-RS method supported the experimental results, and with regard to computed σ-profiles, new modified structures for polysiloxane and polyphosphazene synthesis were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Souquet, JL, Duclot, M, “Thin Film Lithium Batteries.” Solid State Ion, 148 375–379 (2002)

    Article  Google Scholar 

  2. Seo, I, Steve, W, New Developments in Solid Electrolytes for Thin-Film Lithium Batteries, In: Belharouak, I (ed.) Lithium Ion Batteries—New Developments, InTech, New York, 2012. http://www.intechopen.com/books/lithium-ion-batteries-new-developments/new-developments-in-solid-electrolytes-for-thin-film-lithium-batteries

  3. Xia, H, Wang, HL, Xiao, W, Lai, MO, Lu, L, “Thin Film Li Electrolytes for All-Solid-State Micro-batteries.” Int. J. Surf. Sci. Eng., 3 23 (2009)

    Article  Google Scholar 

  4. Bates, JB, Dudney, NJ, Neudecker, B, Ueda, A, Evans, CD, “Thin-Film Lithium and Lithium-Ion Batteries.” Solid State Ion., 135 33–45 (2000)

    Article  Google Scholar 

  5. Gaikwad, AM, Arias, AC, Steingart, DA, “Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects.” Energy Technol., 3 305–328 (2015)

    Article  Google Scholar 

  6. Oudenhoven, JFM, Baggetto, L, Notten, PHL, “All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts.” Adv. Energy Mater., 1 10–33 (2011)

    Article  Google Scholar 

  7. Patil, A, et al., “Issue and Challenges Facing Rechargeable Thin Film Lithium Batteries.” Mater. Res. Bull., 43 1913–1942 (2008)

    Article  Google Scholar 

  8. Seidel, SM, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “PVDF-HFP/Ether-Modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries.” Chem. Commun., 51 12048–12051 (2015)

    Article  Google Scholar 

  9. Gowda, SR, et al., “Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications.” Nano Lett., 11 101–106 (2011)

    Article  Google Scholar 

  10. Lee, H, Lee, DJ, Kim, Y-J, Park, J-K, Kim, H-T, “A Simple Composite Protective Layer Coating that Enhances the Cycling Stability of Lithium Metal Batteries.” J. Power Sources, 284 103–108 (2015)

    Article  Google Scholar 

  11. Sham, AYW, Notley, SM, “Graphene–Polyelectrolyte Multilayer Film Formation Driven by Hydrogen Bonding.” J. Colloid Interface Sci., 456 32–41 (2015)

    Article  Google Scholar 

  12. Jung, Y-C, Lee, S-M, Choi, J-H, Jang, SS, Kim, D-W, “All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes.” J. Electrochem. Soc., 162 A704–A710 (2015)

    Article  Google Scholar 

  13. Zhang, H, et al., “Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte.” Electrochim. Acta, 133 529–538 (2014)

    Article  Google Scholar 

  14. Chun-Guey, W, Chiung-Hui, W, Ming-I, L, Huey-Jan, C, “New Solid Polymer Electrolytes Based on PEO/PAN Hybrids.” J. Appl. Polym. Sci., 99 1530–1540 (2006)

    Article  Google Scholar 

  15. Kesavan, K, Rajendran, S, Mathew, CM, “Studies on Poly(vinyl pyrrolidone) Based Solid Polymer Blend Electrolytes Complexed with Various Lithium Salts.” Polym. Sci. Ser. B, 56 520–529 (2014)

    Article  Google Scholar 

  16. Cznotka, E, Jeschke, S, Vettikuzha, P, Wiemhöfer, H-D, “Semi-interpenetrating Polymer Network of Poly(methyl methacrylate) and Ether-Modified Polysiloxane.” Solid State Ion., 274 55–63 (2015)

    Article  Google Scholar 

  17. Chung, N, Kang, D, Kim, D, “Preparation and Properties of Cross-linked Poly(ethylene glycol)/Poly[(vinylidene fluoride)-co-hexafluoropropylene] Interpenetrating Network-Type Electrolytes for Secondary Lithium Batteries.” Polym. Int., 54 1153–1157 (2005)

    Article  Google Scholar 

  18. Fan, L, Dang, Z, Nan, C-W, Li, M, “Thermal, Electrical and Mechanical Properties of Plasticized Polymer Electrolytes Based on PEO/P(VDF-HFP) Blends.” Electrochim. Acta, 48 205–209 (2002)

    Article  Google Scholar 

  19. Ren, Z, et al., “Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) with Crosslinked Poly(ethylene glycol) for Lithium Batteries.” Solid State Ion., 180 693–697 (2009)

    Article  Google Scholar 

  20. Li, H, et al., “Gel Polymer Electrolytes Based on Active PVDF Separator for Lithium Ion Battery. I: Preparation and Property of PVDF/Poly(dimethylsiloxane) Blending Membrane.” J. Membr. Sci., 379 397–402 (2011)

    Article  Google Scholar 

  21. Li, H, et al., “Preparation and Properties of Poly(vinylidene fluoride)/Poly(dimethylsiloxane) Graft (Poly(propylene oxide)-block-Poly(ethylene oxide)) Blend Porous Separators and Corresponding Electrolytes.” Electrochim. Acta, 116 413–420 (2014)

    Article  Google Scholar 

  22. Liu, F, Hashim, NA, Liu, Y, Abed, MRM, Li, K, “Progress in the Production and Modification of PVDF Membranes.” J. Membr. Sci., 375 1–27 (2011)

    Article  Google Scholar 

  23. Cznotka, E, Jeschke, S, Wiemhöfer, H-D, “Characterization of Semi-interpenetrating Polymer Electrolytes Containing Poly(vinylidene fluoride-co-hexafluoropropylene) and Ether-Modified Polysiloxane.” J. Membr. Sci. (submitted)

  24. Tang, S, Zhao, H, “Glymes as Versatile Solvents for Chemical Reactions and Processes: From the Laboratory to Industry.” RSC Adv., 4 11251 (2014)

    Article  Google Scholar 

  25. Gladysz, J, Curran, DP, “Fluorous Chemistry: From Biphasic Catalysis to a Parallel Chemical Universe and Beyond.” Tetrahedron, 58 3823–3825 (2002)

    Article  Google Scholar 

  26. Hooper, R, et al., “Highly Conductive Siloxane Polymers.” Macromolecules, 34 931–936 (2001)

    Article  Google Scholar 

  27. Bufton, JL, “Laser Altimetry Measurements from Aircraft and Spacecraft.” Proc. IEEE, 77 463–477 (1989)

    Article  Google Scholar 

  28. Fifer-Bizjak, K, “Determining the Surface Roughness Coefficient by 3D Scanner.” Geologija, 53 147–152 (2010)

    Article  Google Scholar 

  29. Kukko, A, Anttila, K, Manninen, T, Kaasalainen, S, Kaartinen, H, “Snow Surface Roughness from Mobile Laser Scanning Data.” Cold Reg. Sci. Technol., 96 23–35 (2013)

    Article  Google Scholar 

  30. Siewczyńska, M, “Method for Determining the Parameters of Surface Roughness by Usage of a 3D Scanner.” Arch. Civ. Mech. Eng., 12 83–89 (2012)

    Article  Google Scholar 

  31. Klamt, A, “The COSMO and COSMO-RS Solvation Models.” Wiley Interdiscip. Rev. Comput. Mol. Sci., 1 699–709 (2011)

    Article  Google Scholar 

  32. Klamt, A, “COSMO-RS for Aqueous Solvation and Interfaces.” Fluid Phase Equilib., (2015). doi:10.1016/j.fluid.2015.05.027

    Google Scholar 

  33. Klamt, A, Jonas, V, Bürger, T, Lohrenz, JCW, “Refinement and Parametrization of COSMO-RS.” J. Phys. Chem. A, 102 5074–5085 (1998)

    Article  Google Scholar 

  34. Jankowsky, S, Hiller, MM, Wiemhöfer, H-D, “Preparation and Electrochemical Performance of Polyphosphazene Based Salt-in-Polymer Electrolyte Membranes for Lithium Ion Batteries.” J. Power Sources, 253 256–262 (2014)

    Article  Google Scholar 

  35. Allcock, HR, Nelson, JM, Reeves, SD, Honeyman, CH, Manners, I, “Ambient-Temperature Direct Synthesis of Poly(organophosphazenes) via the ‘Living’ Cationic Polymerization of Organo-Substituted Phosphoranimines.” Macromolecules, 30 50–56 (1997)

    Article  Google Scholar 

  36. Allcock, HR, Krause, WE, “Polyphosphazenes with Adamantyl Side Groups.” Macromolecules, 30 5683–5687 (1997)

    Article  Google Scholar 

  37. Li, M, et al., “Controlling the Microstructure of Poly(vinylidene-fluoride) (PVDF) Thin Films for Microelectronics.” J. Mater. Chem. C, 1 7695–7702 (2013)

    Article  Google Scholar 

  38. Stewart, JJP, “MOPAC: A Semiempirical Molecular Orbital Program.” J. Comput. Aided Mol. Des., 4, 1–103 (1990)

    Article  Google Scholar 

  39. Maia, JDC, et al., “GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.” J. Chem. Theory Comput., 8 3072–3081 (2012)

    Article  Google Scholar 

  40. Stewart, JJP, “Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-optimization of Parameters.” J. Mol. Model., 19 1–32 (2013)

    Article  Google Scholar 

  41. Allouche, A-R, “Gabedit—A Graphical User Interface for Computational Chemistry Softwares.” J. Comput. Chem., 32 174–182 (2011)

    Article  Google Scholar 

  42. TURBOMOLE, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2007

  43. Ahlrichs, R, Bär, M, Häser, M, Horn, H, Kölmel, C, “Electronic Structure Calculations on Workstation Computers: The Program System Turbomole.” Chem. Phys. Lett., 162 165–169 (1989)

    Article  Google Scholar 

  44. Becke, AD, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior.” Phys. Rev. A, 38 3098–3100 (1988)

    Article  Google Scholar 

  45. Perdew, JP, “Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas.” Phys. Rev. B, 33 8822–8824 (1986)

    Article  Google Scholar 

  46. Schäfer, A, Huber, C, Ahlrichs, R, “Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr.” J. Chem. Phys., 100 5829 (1994)

    Article  Google Scholar 

  47. Loschen, C, Klamt, A, “Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS.” Ind. Eng. Chem. Res., 53 11478–11487 (2014)

    Article  Google Scholar 

  48. Fox, TG, Flory, PJ, “Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight.” J. Appl. Phys., 21 581 (1950)

    Article  Google Scholar 

  49. Bharti, A, Banerjee, T, “Solubility Prediction of Bio-oil Derived Chemicals in Aqueous Media by Localized Molecular Orbital-Energy Decomposition Analysis (LMO-EDA) and COSMO-RS predictions.” Comput. Theor. Chem., 1067 48–59 (2015)

    Article  Google Scholar 

  50. Garcia-Chavez, LY, Hermans, AJ, Schuur, B, de Haan, AB, “COSMO-RS Assisted Solvent Screening for Liquid–Liquid Extraction of Mono Ethylene Glycol from Aqueous Streams.” Sep. Purif. Technol., 97 2–10 (2012)

    Article  Google Scholar 

  51. Klamt, A, Eckert, F, “COSMO-RS: A Novel and Efficient Method for the A Priori Prediction of Thermophysical Data of Liquids.” Fluid Phase Equilib., 172 43–72 (2000)

    Article  Google Scholar 

  52. Hallinan, DT, Balsara, NP, “Polymer Electrolytes.” Annu. Rev. Mater. Res., 43 503–525 (2013)

    Article  Google Scholar 

  53. Meyer, WH, “Polymer Electrolytes for Lithium-Ion Batteries.” Adv. Mater. Deerfield Beach Fla, 10 439–448 (1998)

Download references

Acknowledgments

The authors want to thank Hendrik Rönnfeldt and Kai Meine from KEYENCE Microscope Europe for technical support and assistance referring to the 3D laser scanning confocal microscopy. This work was financially supported within BMBF grant 13N13240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Cznotka.

Additional information

Eva Cznotka and Steffen Jeschke have contributed equally to this work.

This paper was presented at the 11th Coatings Science International Conference (COSI) on June 22–26, 2015 in Noordwijk, the Netherlands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cznotka, E., Jeschke, S., Schmohl, S. et al. 3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films. J Coat Technol Res 13, 577–587 (2016). https://doi.org/10.1007/s11998-015-9754-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9754-4

Keywords

Navigation