Skip to main content
Log in

Exploring Antimicrobial Hydroxypropyl-β-Cyclodextrin Inclusion Complexes for Cheese Preservation: A Combined Theoretical and Experimental Study

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Cyclodextrin enhances the activity of bioactive compounds through the formation of inclusion complexes (ICs), but its effect on diverse compound structures and processing methods is poorly understood. Here, our goal is to provide a comprehensive and cohesive insight into hydroxypropyl-β-cyclodextrin (HPβCD) complexation with cinnamaldehyde (CINN), citral (CIT), or their combination (MIX), prepared via kneading (KN), or freeze-drying (FD) using analytical techniques and computational simulations. Thermodynamic analysis revealed an exothermic and spontaneous (ΔG < 0) complexation process, with CINN-ICs exhibiting greater stability constants at 25 °C than CIT-ICs. Among the methods, CIT-KN displayed the highest efficiency (90.7%) and drug loading (9%), while CINN-KN showcased higher zeta potential (−23.2 mV), controlled release (35%), and antimicrobial activity (against both gram-positive and gram-negative bacteria). Computer simulations confirmed the absence of ternary complexes (CINN+CIT in HPβCD) and revealed the coexistence of association and ICs. Thermal analyses demonstrated high thermal stability (up to 207 °C) of included compounds, enhancing the suitability of these complexes for high-temperature processes. Additionally, CINN-KN incorporation into methylcellulose creates an active film, which effectively inhibited the proliferation of L. monocytogenes and S. Choleraesuis in cheeses (up to 1.3 cm halo inhibition), even following exposure to temperatures as high as 50 °C. Through combined experiments and computations, we uncovered how processing affects ICs performance with bioactive compounds, confirming their associative interactions with HPβCD. Thus, we underscore that the active function of ICs containing bioactive compounds relies not only on compound structure but also on processing methods, involving a collaborative interplay between both factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available at the request of the corresponding author.

Abbreviations

CINN:

Cinnamaldehyde

CIT:

Citral

CDs:

Cyclodextrins

DS:

Degree of substitution

DL:

Drug loading

EE:

Entrapment efficiency

FD:

Freeze-drying

DFT:

Functional theory of density

ICs:

Inclusion complexes

KN:

Kneading

MC:

Methylcellulose

MIC:

Minimum bactericidal concentration

MIX:

Mixture of both cinnamaldehyde and citral

MD:

Molecular dynamics

MM:

Molecular mechanics

References

  • Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Perez, M. A. F., Felipe, F. R. S., & Padula, M. (2017). Application of β-Cyclodextrin/2-nonanone inclusion complex as active agent to design of antimicrobial packaging films for control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585–1594. https://doi.org/10.1007/s11947-017-1926-z

    Article  CAS  Google Scholar 

  • Adukwu, E. C., Bowles, M., Edwards-Jones, V., & Bone, H. (2016). Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Applied Microbiology and Biotechnology, 100(22), 9619–9627. https://doi.org/10.1007/s00253-016-7807-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnes, M., Pancani, E., Malanga, M., Fenyvesi, E., & Manet, I. (2022). Implementation of water-soluble cyclodextrin-based polymers in biomedical applications: How far are we? Macromolecular Bioscience. https://doi.org/10.1002/mabi.202200090

    Article  PubMed  Google Scholar 

  • Ambaw, A., Verboven, P., Delele, M. A., Defraeye, T., Tijskens, E., Schenk, A., & Nicolai, B. M. (2013). CFD modelling of the 3D spatial and temporal distribution of 1-methylcyclopropene in a fruit storage container. Food and Bioprocess Technology, 6(9), 2235–2250. https://doi.org/10.1007/s11947-012-0913-7

    Article  CAS  Google Scholar 

  • Arruda, T. A., Silva, R. R. A., Marques, C. S., Moraes, A. R. F., Bernardes, P. C., de Oliveira, T. V., de Oliveira, S. O., Muranyi, P., & Soares, N. F. F. (2024). β-cyclodextrin versus hydroxypropyl-β-cyclodextrin: Is inclusion complexation a suitable alternative to improve the properties of hop-derived β-acids? Food Hydrocolloids, 149, 109622. https://doi.org/10.1016/j.foodhyd.2023.109622

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F., Del-Toro-Sánchez, L., Alvarez-Parrilla, E., & González-Aguilar, G. A. (2008). High relative humidity in-package of fresh-cut fruits and vegetables: Advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? Journal of Food Science. https://doi.org/10.1111/j.1750-3841.2008.00705.x

    Article  PubMed  Google Scholar 

  • Barbosa, L. C. A. (2007). Espectroscopia no infravermelho na caracterização de compostos orgânicos (1st ed., Vol.1). Editora UFV. ISBN: 978-85-7269-280-9.

    Google Scholar 

  • Belhouchet, H. R., Abbaz, T., Bendjedou, A., Gouasmia, A., & Villemin, D. (2022). A computational study of the inclusion of β-cyclodextrin and nicotinic acid: DFT, DFT-D, NPA, NBO, QTAIM, and NCI-RDG studies. Journal of Molecular Modeling. https://doi.org/10.1007/s00894-022-05342-1

    Article  PubMed  Google Scholar 

  • BRAZIL, Ministry of Health - ANVISA. (2010). Resolution of the Collegiate Board - RDC No. 51 of November 26. Provides for migration in materials, packaging and plastic equipment intended to come into contact with food. DOU nº 244, December 22, 2010. Brasília, Brazil.

  • Buendía-Moreno, L., Ros-Chumillas, M., Navarro-Segura, L., Sánchez-Martínez, M. J., Soto-Jover, S., Antolinos, V., Martínez-Hernández, G. B., & López-Gómez, A. (2019). Effects of an active cardboard box using encapsulated essential oils on the tomato shelf life. Food and Bioprocess Technology, 12(9), 1548–1558. https://doi.org/10.1007/s11947-019-02311-0

    Article  CAS  Google Scholar 

  • Charumanee, S., Titwan, A., Sirithunyalug, J., Weiss-Greiler, P., Wolschann, P., Viemstein, H., & Okonogi, S. (2006). Thermodynamics of the encapsulation by cyclodextrins. Journal of Chemical Technology and Biotechnology, 81(4), 523–529. https://doi.org/10.1002/jctb.1525

    Article  CAS  Google Scholar 

  • Chen, H., Li, L., Ma, Y., Mcdonald, T. P., & Wang, Y. (2019). Development of active packaging film containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocolloids, 90, 360–366. https://doi.org/10.1016/j.foodhyd.2018.12.043

    Article  CAS  Google Scholar 

  • de Fátima Abreu Venceslau, A., dos Santos, F. E., de Fátima, Silva A., Rocha, D. A., de Abreu, A. J., Jaime, C., Andrade-Vieira, L. F., & Pinto, L. D. (2018). Cyclodextrins as effective tools to reduce the toxicity of atrazine. Energy, Ecology and Environment, 3(2), 81–86. https://doi.org/10.1007/s40974-017-0073-8

    Article  Google Scholar 

  • de Souza, E. L., da Cruz Almeida, E. T., & de Sousa Guedes, J. P. (2016). The potential of the incorporation of essential oils and their individual constituents to improve microbial safety in juices: A review. Comprehensive Reviews in Food Science and Food Safety, 15(4), 753–772. https://doi.org/10.1111/1541-4337.12208. Blackwell Publishing Inc.

    Article  PubMed  Google Scholar 

  • Entrena, A., & Jaime, C. (1997). Cyclodextrin inclusion complexes. Molecular mechanics calculations on the modification of π-face selectivity. Journal of Organic Chemistry, 62(17), 5923–5927. https://doi.org/10.1021/jo9614396

    Article  CAS  Google Scholar 

  • Fathallah, M., Fotiadu, F., & Jaime, C. (1994). Cyclodextrin inclusion complexes. MM2 calculations reproducing bimodal inclusions. Journal of Organic Chemistry, 59(6), 1288–1293. https://doi.org/10.1021/jo00085a015

    Article  CAS  Google Scholar 

  • González-Mondragón, E., Torralba-González, A., García-Gutiérrez, P., Robles-González, V. S., Salazar-Govea, A. Y., & Zubillaga, R. A. (2016). Thermodynamic analysis of ferulate complexation with α-, β- And γ-cyclodextrins. Thermochimica Acta, 634, 1–5. https://doi.org/10.1016/j.tca.2016.04.009

    Article  CAS  Google Scholar 

  • Hendrickson, W. C. S. A. T. R. C. H. T. (1990). Communications to the editor Table I. Comparison of solvation free energies from Eqs. 2 and 5 with FEP calculations and experiment solute.

    Google Scholar 

  • Higuchi, T., & Connors, K. A. (1965). Advances in analytical chemistry and instrumentation (pp. 117–212)

    Google Scholar 

  • Hill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86–93. https://doi.org/10.1016/j.lwt.2012.11.011

    Article  CAS  Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864–871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  • Hu, L., Zhang, H., Song, W., Gu, D., & Hu, Q. (2012). Investigation of inclusion complex of cilnidipine with hydroxypropyl-β-cyclodextrin. Carbohydrate Polymers, 90(4), 1719–1724. https://doi.org/10.1016/j.carbpol.2012.07.057

    Article  CAS  PubMed  Google Scholar 

  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz, S., Banoo, S., Muzaffar, S., & Ali, S. M. (2021). Structural determination of midazolam/beta-cyclodextrin inclusion complex by an already proposed protocol and molecular docking studies by quantitative analysis. Structural Chemistry, 32(4), 1505–1516. https://doi.org/10.1007/s11224-021-01727-9

    Article  CAS  Google Scholar 

  • Ivanov, P. M., Salvatierra, D., & Jaime, C. (1996). Experimental (NMR) and computational (MD) studies on the inclusion complexes of 1-bromoadamantane with α-, β-, and γ-cyclodextrin. The Journal of Organic Chemistry, 61(20), 7012–7017.

    Article  CAS  PubMed  Google Scholar 

  • Izadi, F., Alamoti, M. P., Aryou, E., & Nourian, A. (2024). Fabrication and characterization of active poly(Lactic Acid) films containing Thymus daenensis essential oil/Beta-cyclodextrin inclusion complex and silver nanoparticles to extend the shelf life of ground beef. Food and Bioprocess Technology, 17(5), 1309–1320. https://doi.org/10.1007/s11947-023-03200-3

    Article  CAS  Google Scholar 

  • Jaimel, C., Redondo, J., Sánchez-Ferrando, F., & Virgili, A. (1991). β-cyclodextrin inclusion complex with adamantane Intermolecular 1H {1H} NOE determinations and molecular mechanics calculations. Journal of Molecular Structure, 248(3–4), 317–329.

    Article  Google Scholar 

  • Kamimura, J. A., Santos, E. H., Hill, L. E., & Gomes, C. L. (2014). Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT - Food Science and Technology, 57(2), 701–709. https://doi.org/10.1016/j.lwt.2014.02.014

    Article  CAS  Google Scholar 

  • Karangwa, E., Hayat, K., Rao, L., Nshimiyimana, D. S., Foh, M. B. K., Li, L., Ntwali, J., Raymond, L. V., Xia, S., & Zhang, X. (2011). Improving blended carrot-orange juice quality by the addition of cyclodextrins during enzymatic clarification. Food and Bioprocess Technology, 5(6), 2612–2617. https://doi.org/10.1007/s11947-011-0557-z

    Article  CAS  Google Scholar 

  • Kfoury, M., Auezova, L., Greige-Gerges, H., & Fourmentin, S. (2019). Encapsulation in cyclodextrins to widen the applications of essential oils. Environmental Chemistry Letters, 17(1), 129–143. https://doi.org/10.1007/s10311-018-0783-y

    Article  CAS  Google Scholar 

  • Kicuntod, J., Sangpheak, K., Mueller, M., Wolschann, P., Viernstein, H., Yanaka, S., Kato, K., Chavasiri, W., Pongsawasdi, P., Kungwan, N., & Rungrotmongkol, T. (2018). Theoretical and experimental studies on inclusion complexes of pinostrobin and β-cyclodextrins. Scientia Pharmaceutica. https://doi.org/10.3390/scipharm86010005

    Article  PubMed  PubMed Central  Google Scholar 

  • Kloosterman, W. M. J., Van Dijk, G. S., & Loos, K. (2014). Biocatalytic synthesis of maltodextrin-based acrylates from starch and a-Cyclodextrina. Macromolecular Bioscience, 14(9), 1268–1279. https://doi.org/10.1002/mabi.201400091

    Article  CAS  PubMed  Google Scholar 

  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133.

    Article  Google Scholar 

  • Leunissen, M. E., Zwanikken, J., van Roij, R., Chaikin, P. M., & van Blaaderen, A. (2007). Ion partitioning at the oil–water interface as a source of tunable electrostatic effects in emulsions with colloids. Physical Chemistry Chemical Physics, 9(48), 6313–6318. https://doi.org/10.1039/b705094a

    Article  CAS  Google Scholar 

  • Li, M., Zhang, F., Liu, Z., Guo, X., Wu, Q., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 11(9), 1695–1702. https://doi.org/10.1007/s11947-018-2134-1

    Article  CAS  Google Scholar 

  • Lin, L., Dai, Y., & Cui, H. (2017). Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydrate Polymers, 178, 131–140. https://doi.org/10.1016/j.carbpol.2017.09.043

    Article  CAS  PubMed  Google Scholar 

  • Ling, J. K. U., Sam, J. H., Jeevanandam, J., Chan, Y. S., & Nandong, J. (2022). Thermal degradation of antioxidant compounds: Effects of parameters, thermal degradation kinetics, and formulation strategies. Food and Bioprocess Technology, 15(9), 1919–1935. https://doi.org/10.1007/s11947-022-02797-1

    Article  CAS  Google Scholar 

  • MacroModel. (2021). Version 9.9. Schrödinger, LLC.

    Google Scholar 

  • Marian, E., Duteanu, N., Vicas, L., Rusu, G., Jurca, T., Muresan, M., Micle, O., Hangan, A. C., Stan, R. L., Ionescu, C., Sevastre, B., & Páll, E. (2020). Synthesis, characterization of inclusion compounds of amygdalin with β-cyclodextrin and sod-like activity and cytotoxicity on hela tumor cells. Arabian Journal of Chemistry, 13(8), 6828–6837. https://doi.org/10.1016/j.arabjc.2020.06.035

    Article  CAS  Google Scholar 

  • Marques, C. S., Dias, M. V., de Soares, N., & F. F., Borges, S. V., de Oliveira, I. R. N., Pires, A. C. dos S., Medeiros, E. A. A., & Alves, E. (2021). Ultrastructural and antimicrobial impacts of allyl isothiocyanate incorporated in cellulose, β-cyclodextrin, and carbon nanotubes nanocomposites. Journal of Vinyl and Additive Technology, 27(4), 795–805. https://doi.org/10.1002/vnl.21850

    Article  CAS  Google Scholar 

  • Marques, C. S., Silva, R. R. A., Arruda, T. R., Ferreira, A. L. V., de Oliveira, T. V., Moraes, A. R. F., Dias, M. V., Vanetti, M. C. D., de Soares, N., & F. F. (2022). Development and investigation of zein and cellulose acetate polymer blends incorporated with garlic essential oil and β-cyclodextrin for potential food packaging application. Polysaccharides, 3(1), 277–291. https://doi.org/10.3390/polysaccharides3010016

    Article  CAS  Google Scholar 

  • Mathapa, B. G., & Paunov, V. N. (2013). Self-assembly of cyclodextrin-oil inclusion complexes at the oil-water interface: A route to surfactant-free emulsions. Journal of Materials Chemistry A, 1(36), 10836–10846. https://doi.org/10.1039/c3ta12108a

    Article  CAS  Google Scholar 

  • Mendes, L. A., Silva, R. R. A., de Oliveira Soares, E. E., Corrêa, M. J., Marques, C. S., da Silva Ferreira, M. F., Teixeira, R. R., & Moreira, R. P. L. (2023a). Optimization of inclusion complex’s preparation of Psidium cattleyanum S. essential oil and 2-hydroxypropyl-β-cyclodextrin by central composite design for application as larvicide in Aedes aegypti L. Industrial Crops and Products, 194(October 2022), 116333.

    Article  CAS  Google Scholar 

  • Mendes, L. A., Silva, R. R. A., Soares, N. D., Martins, G. F., Teixeira, R. R., da Silva Ferreira, M. F., & Moreira, R. P. L. (2022). Development of inclusion complexes of 2-hydroxypropyl-β-cyclodextrin with Psidium guajava L. essential oil by freeze-drying and kneading methods for application as Aedes aegypti L. larvicide. Natural Product Research. https://doi.org/10.1080/14786419.2022.2112579

    Article  PubMed  Google Scholar 

  • Mendes, L. A., Vasconcelos, L. C., Fontes, M. M. P., Martins, G. S., Bergamin, A., & d. S., Silva, M. A., Silva, R. R. A., Oliveira, T. V. d., Souza, V. G. L., Ferreira, M. F. d. S., Teixeira, R. R., Lopes, R. P. (2023b). Herbicide and cytogenotoxic activity of inclusion complexes of Psidium gaudichaudianum leaf essential oil and β-caryophyllene on 2-hydroxypropyl-β-cyclodextrin. Molecules, 2023(28), 5909. https://doi.org/10.3390/molecules28155909

    Article  CAS  Google Scholar 

  • Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., & Stillh, W. C. (1990). MacroModel-An integrated software system for modeling organic and bioorganic molecules using molecular mechanics. Journal of Computational Chemistry, 11(4), 440–467.

    Article  CAS  Google Scholar 

  • Nora, M., Ismahan, L., Abdelkrim, G., Mouna, C., Leila, N., Fatiha, M., Nada, B., & Brahim, H. (2020). Interactions in inclusion complex of β-cyclodextrin/l-Metheonine: DFT computational studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 96(1–2), 43–54. https://doi.org/10.1007/s10847-019-00948-0

    Article  CAS  Google Scholar 

  • Ozdemir, N., Pola, C. C., Teixeira, B. N., Hill, L. E., Bayrak, A., & Gomes, C. L. (2018). Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: A comparative study. LWT - Food Science and Technology, 91, 439–445. https://doi.org/10.1016/j.lwt.2018.01.046

    Article  CAS  Google Scholar 

  • Pavoni, L., Perinelli, D. R., Bonacucina, G., Cespi, M., & Palmieri, G. F. (2020). An overview of micro-and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability. Nanomaterials. https://doi.org/10.3390/nano10010135. MDPI AG.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Ferguson, D. M., Seibel, G. L., Singh, U. C., Weiner, P. K., & Kollman, P. A. (1995). AMBER 4.1. University of California, San Francisco.

    Google Scholar 

  • Petersson, G. A., & Ai-Laham, M. A. (1991). A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms.

    Book  Google Scholar 

  • Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., & Mantzaris, J. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. The Journal of Chemical Physics, 89(4), 2193–2218. https://doi.org/10.1063/1.455064

    Article  CAS  Google Scholar 

  • Pitha, J., Rao, C. T., Lindberg, B., & Seffers, P. (1990). Distribution of substituents in 2-hydroxypropyl ethers of cyclomaltoheptaose. Carbohydrate Research, 200, 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Polak, E., & Ribiere, G. (1969). Revue française d’informatique et de recherche opérationnelle. Série rouge. Note sur la convergence de méthodes de directions conjuguées. http://www.numdam.org/conditionsns. Accessed 12 Mar 2023.

  • Ren, X., Yue, S., Xiang, H., & Xie, M. (2018). Inclusion complexes of eucalyptus essential oil with β-cyclodextrin: Preparation, characterization and controlled release. Journal of Porous Materials, 25(6), 1577–1586. https://doi.org/10.1007/s10934-018-0571-x

    Article  CAS  Google Scholar 

  • Saffarionpour, S. (2019). Nanoencapsulation of hydrophobic food flavor ingredients and their cyclodextrin inclusion complexes. Food and Bioprocess Technology, 12(7), 1157–1173. https://doi.org/10.1007/s11947-019-02285-z

    Article  CAS  Google Scholar 

  • Saldanha do Carmo, C., Pais, R., Simplício, A. L., Mateus, M., & Duarte, C. M. M. (2017). Improvement of aroma and shelf-life of nonalcoholic beverages through cyclodextrins-limonene inclusion complexes. Food and Bioprocess Technology, 10(7), 1297–1309. https://doi.org/10.1007/s11947-017-1897-0

    Article  CAS  Google Scholar 

  • Sánchez-Ruiz, X., Alvarez-Larena, A., Jaime, C., Piniella, J. F., Redondo, J., Virgili, A., Sánchez-Ferrando, F., Germain, G., & Baert, F. (1999). Molecular and crystal structure of the 1:1 complex of adamantanone with β-cyclodextrin. Supramolecular Chemistry, 10(3), 219–223. https://doi.org/10.1080/10610279908559288

    Article  Google Scholar 

  • Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology, 60(1), 583–592. https://doi.org/10.1016/j.lwt.2014.08.046

    Article  CAS  Google Scholar 

  • Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. https://doi.org/10.3390/molecules23051161. MDPI AG.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, R. R. A., de Freitas, P. A. V., Teixeira, S. C., de Oliveira, T. V., Marques, C. S., Stringheta, P. C., dos Santos Pires, A. C., Ferreira, S. O., & de Fátima Ferreira Soares, N. (2022). Plasticizer effect and ionic cross-linking: The impact of incorporating divalent salts in methylcellulose films for colorimetric detection of volatile ammonia. Food Biophysics, 17(1), 59–74. https://doi.org/10.1007/s11483-021-09700-z

    Article  Google Scholar 

  • Singh, B. K., Tiwari, S., & Dubey, N. K. (2021). Essential oils and their nanoformulations as green preservatives to boost food safety against mycotoxin contamination of food commodities: A review. Journal of the Science of Food and Agriculture, 101(12), 4879–4890. https://doi.org/10.1002/jsfa.11255

    Article  CAS  PubMed  Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  • Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: A review. Comprehensive Reviews in Food Science and Food Safety, 12(1), 40–53. https://doi.org/10.1111/1541-4337.12006

    Article  CAS  Google Scholar 

  • Uyar, T., Rusa, C. C., Hunt, M. A., Aslan, E., Hacaloglu, J., & Tonelli, A. E. (2005). Reorganization and improvement of bulk polymers by processing with their cyclodextrin inclusion compounds. Polymer, 46(13), 4762–4775. https://doi.org/10.1016/j.polymer.2005.04.002

    Article  CAS  Google Scholar 

  • Viacava, G. E., Cenci, M. P., & Ansorena, M. R. (2022). Effect of chitosan edible coatings incorporated with free or microencapsulated thyme essential oil on quality characteristics of fresh-cut carrot slices. Food and Bioprocess Technology, 15(4), 768–784. https://doi.org/10.1007/s11947-022-02783-7

    Article  CAS  Google Scholar 

  • Wankar, J., Kotla, N. G., Gera, S., Rasala, S., Pandit, A., & Rochev, Y. A. (2020). Recent advances in host–guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Advanced Functional Materials, 30(44), 1–27. https://doi.org/10.1002/adfm.201909049

    Article  CAS  Google Scholar 

  • Wu, C., Xie, Q., Xu, W., Tu, M., & Jiang, L. (2019). Lattice self-assembly of cyclodextrin complexes and beyond. Current Opinion in Colloid and Interface Science, 39, 76–85. https://doi.org/10.1016/j.cocis.2019.01.002. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Ye, Y., Zhu, M., Miao, K., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial gelatin-based edible films by incorporation of trans-anethole/β-cyclodextrin inclusion complex. Food and Bioprocess Technology, 10(10), 1844–1853. https://doi.org/10.1007/s11947-017-1954-8

    Article  CAS  Google Scholar 

  • Yong, C. W., Washington, C., & Smith, W. (2008). Structural behaviour of 2-hydroxypropyl-β-cyclodextrin in water: Molecular dynamics simulation studies. Pharmaceutical Research, 25(5), 1092–1099. https://doi.org/10.1007/s11095-007-9506-y

    Article  CAS  PubMed  Google Scholar 

  • Yuan, C., Thomas, D. S., Hook, J. M., Qin, G., Qi, K., & Zhao, J. (2019). Molecular encapsulation of eucalyptus staigeriana essential oil by forming inclusion complexes with hydroxypropyl-β-cyclodextrin. Food and Bioprocess Technology, 12(8), 1264–1272. https://doi.org/10.1007/s11947-019-02291-1

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. Y. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282–289. https://doi.org/10.1016/j.foodcont.2015.05.032

    Article  CAS  Google Scholar 

  • Zhao, D., Yi, X., Yuan, G., Zhuo, R., & Li, F. (2017). Design and construction of a smart targeting drug delivery system based on phototriggered competition of host–guest interaction. Macromolecular Bioscience, 17(9), 1–10. https://doi.org/10.1002/mabi.201700150

    Article  CAS  Google Scholar 

  • Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002. KeAi Communications Co.

    Article  Google Scholar 

  • Zubiaur, M., & Jaime, C. (2000). Complexation between tert-butyl ketones and β-cyclodextrin. Structural study by NMR and MD simulations. Journal of Organic Chemistry, 65(24), 8139–8145. https://doi.org/10.1021/jo0006021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Microscope Core Facility (UFV) for using the transmission electron microscope.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance code 001.

Author information

Authors and Affiliations

Authors

Contributions

R.R.A.S. wrote the main manuscript text, planned, proposed methodologies, performed the experiments and data collection, discussed the results, constructed all figures (with the exception of computational modeling figures). C.S.M. contributed to writing the main manuscript, collaborated in the execution of the analytical experiments and, in addition to guiding the biological experiments, contributed to the discussion of all results. L.A.M. contributed to writing the main manuscript, collaborated in the execution of the analytical experiments and the discussion of some results. P.A.V.F. contributed to writing the main manuscript, collaborated in the execution of the analytical experiments and the discussion of some results. T.V.O. contributed to writing the main manuscript, collaborated in the execution of the analytical experiments and the discussion of some results, supervised the execution of the experiments. L.M.A.P. contributed to writing the main manuscript, contributed to the interpretation of the computer simulation and correlation of thermodynamic results. C.J. contributed to writing the main manuscript, was responsible for the computer simulation, creation of figures and tables associated with these results, discussed these results and revised the English and structure of the article. N.F.F.S. contributed to writing the main manuscript text, planned, proposed methodologies, supervised the entire experimental and written part of the scientific article. Revised the English and written structure of the article. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Rafael Resende Assis Silva or Nilda de Fátima Ferreira Soares.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.R.A., Marques, C.S., Mendes, L.A. et al. Exploring Antimicrobial Hydroxypropyl-β-Cyclodextrin Inclusion Complexes for Cheese Preservation: A Combined Theoretical and Experimental Study. Food Bioprocess Technol (2024). https://doi.org/10.1007/s11947-024-03418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-024-03418-9

Keywords

Navigation