Skip to main content
Log in

Enhancement of Alpha-amylase’s Stability and Catalytic Efficiency After Modifying Enzyme Structure Using Calcium and Ultrasound

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

High thermostability and catalytic efficiency of α-amylase are required for the industrial applications. To improve catalytic parameters including Michaelis constant, maximum velocity, turnover number, enzyme half-life, and the catalytic efficiency of α-amylase, it was treated alone and/or simultaneously with Ca2+ ions (12.5 and 25 mM) and/or ultrasound (USN) (64.5 W, 25 + 40 kHz). The structural analysis of the enzyme (the enzyme’s secondary structure and conformation) was carried out using Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) techniques. Moreover, the thermal properties of the enzyme were evaluated using differential scanning calorimetry (DSC). USN + 12.5 mM Ca2+ and 25 mM Ca2+, changed the maximum velocity (+ 6.5% and + 37.4%), turnover number (+ 6.6% and + 38.2%), enzyme half-life (+ 51.6% and + 113.7%), and catalytic efficiency (+ 18.1% and -3.3%) of α-amylase. The energy barriers of thermo-inactivation and inactivation enthalpy of α-amylase exposed to USN + 25 mM Ca2+ were increased by 25% and 5.8%, respectively, without affecting entropy of inactivation, showing how enzyme’s thermal stability was improved after the treatments. The increase in midpoint temperature (35%) and α-helix (14%) values as well as the decrease in the β-sheet structure (39%) of the α-amylase after applying USN + Ca2+ (25 mM) confirmed the thermal stability enhancement of α-amylase after the treatment compared to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Research data are not shared.

Abbreviations

K m :

Michaelis constant

V max :

Maximum velocity

K cat :

Turnover number

t 1/2 :

Enzyme half-life

K cat/K m :

Catalytic efficiency

T m :

Midpoint temperature

ΔH:

Enthalpy

Ea(in):

Energy barriers of thermo-inactivation

∆G*:

Entropy of inactivation

References

  • Abedi, E., Pourmohammadi, K., & Abbasi, S. (2019a). Dual-frequency ultrasound for ultrasonic-assisted esterification. Food Science and Nutrition, 7(8). https://doi.org/10.1002/fsn3.1115

  • Abedi, E., Pourmohammadi, K., Jahromi, M., Niakousari, M., & Torri, L. (2019b). The effect of ultrasonic probe size for effective ultrasound-assisted pregelatinized starch. Food and Bioprocess Technology, 12(11). https://doi.org/10.1007/s11947-019-02347-2

  • Abedi, E, & Pourmohammadi, K. (2020). Chemical modifications and their effects on gluten protein: An extensive review. Food Chemistry, 128398.

  • Abedi, E., Maleki, S., Pourmohammadi, K., & Kazemi, M. R. (2023a). Which one is important to achieve maximum degree of hydrolysis, starch pre-treatment or activated α-amylase: Kinetics and mathematical modeling for liquefaction. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-023-01995-5

    Article  Google Scholar 

  • Abedi, E., Savadkoohi, S., & Banasaz, S. (2023b). The effect of thiolation process with l-cysteine on amylolysis efficiency of starch-cysteine conjugate by α-amylase. Food Chemistry, 410, 135261.

    Article  CAS  PubMed  Google Scholar 

  • Abedi, E., Mousavifard, M., & Hashemi, S. M. B. (2022a). Ultrasound-assisted detoxification of ochratoxin A: Comparative study of cell wall structure, hydrophobicity, and toxin binding capacity of single and co-culture lactic acid bacteria. Food and Bioprocess Technology, 15(3), 539–560.

    Article  CAS  Google Scholar 

  • Abedi, Elahe, Sayadi, M., & Pourmohammadi, K. (2022b). Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocolloids, 107676.

  • Abedi, E., & Pourmohammadi, K. (2021). Physical modifications of wheat gluten protein: An extensive review. Journal of Food Process Engineering, 44(3), e13619.

    Article  CAS  Google Scholar 

  • Afrisham, S., Badoei-Dalfard, A., Namaki-Shoushtari, A., & Karami, Z. (2016). Characterization of a thermostable, CaCl2-activated and raw-starch hydrolyzing alpha-amylase from Bacillus licheniformis AT70: Production under solid state fermentation by utilizing agricultural wastes. Journal of Molecular Catalysis B: Enzymatic, 132, 98–106.

    Article  CAS  Google Scholar 

  • Ananingsih, V. K., Gao, J., & Zhou, W. (2013). Impact of green tea extract and fungal alpha-amylase on dough proofing and steaming. Food and Bioprocess Technology, 6(12), 3400–3411.

    Article  CAS  Google Scholar 

  • Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O. E., & Pilosof, A. M. R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108(3), 463–472.

    Article  CAS  Google Scholar 

  • Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X., & Jin, Z. (2013). Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 20(1), 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Belova, V., Gorin, D. A., Shchukin, D. G., & Möhwald, H. (2011). Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces. ACS Applied Materials & Interfaces, 3(2), 417–425.

    Article  CAS  Google Scholar 

  • Brown, I., Dafforn, T. R., Fryer, P. J., & Cox, P. W. (2013). Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1834(12), 2600–2605.

  • Cisneros-Yupanqui, M., Lante, A., Mihaylova, D., Krastanov, A. I., & Rizzi, C. (2022). The α-amylase and α-glucosidase inhibition capacity of grape pomace: A review. Food and Bioprocess Technology, 1–13.

  • Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2013). High-intensity ultrasound processing of pineapple juice. Food and Bioprocess Technology, 6(4), 997–1006.

    Article  CAS  Google Scholar 

  • Faryadi, M., Rahimi, M., Moradi, N., & Safari, S. (2015). Ammonia removal using 1.7 MHz high frequency ultrasound in batch and novel dam–weir falling systems. Desalination and Water Treatment, 54(12), 3412–3421.

  • Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1(4), 339–345.

    Article  Google Scholar 

  • Fitter, J., Herrmann, R., Dencher, N. A., Blume, A., & Hauss, T. (2001). Activity and stability of a thermostable α-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry, 40(35), 10723–10731.

    Article  CAS  PubMed  Google Scholar 

  • Gaquere-Parker, A., Taylor, T., Hutson, R., Rizzo, A., Folds, A., Crittenden, S., Zahoor, N., Hussein, B., & Arruda, A. (2018). Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase. Ultrasonics Sonochemistry, 41, 404–409.

    Article  CAS  PubMed  Google Scholar 

  • Ghollasi, M., Ghanbari-Safari, M., & Khajeh, K. (2013). Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Enzyme and Microbial Technology, 53(6–7), 406–413.

    Article  CAS  PubMed  Google Scholar 

  • Guiseppi-Elie, A., Choi, S.-H., & Geckeler, K. E. (2009). Ultrasonic processing of enzymes: Effect on enzymatic activity of glucose oxidase. Journal of Molecular Catalysis B: Enzymatic, 58(1–4), 118–123.

    Article  CAS  Google Scholar 

  • Gülseren, İ, Güzey, D., Bruce, B. D., & Weiss, J. (2007). Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 14(2), 173–183.

    Article  PubMed  Google Scholar 

  • Hathout, A. S., & Aly, S. E. (2014). Biological detoxification of mycotoxins: A review. Annals of Microbiology, 64(3), 905–919.

    Article  CAS  Google Scholar 

  • Irfan, M., Nadeem, M., Syed, Q., Abdullah Shakir, H., & Iqbal Qazi, J. (2016). Study on some properties of calcium-dependent a-amylase from Bacillus subtilis through submerged fermentation of wheat bran. Chemical and Biochemical Engineering Quarterly, 30(4), 429–437.

    Article  CAS  Google Scholar 

  • Khajeh, K., Ranjbar, B., Naderi-Manesh, H., Habibi, A. E., & Nemat-Gorgani, M. (2001). Chemical modification of bacterial α-amylases: Changes in tertiary structures and the effect of additional calcium. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1548(2), 229–237.

  • Kowalczuk, D., & Pitucha, M. (2019). Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials. Materials, 12(18), 2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladole, M. R., Mevada, J. S., & Pandit, A. B. (2017). Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresource Technology, 239, 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Ladole, M. R., Nair, R. R., Bhutada, Y. D., Amritkar, V. D., & Pandit, A. B. (2018). Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry, 48, 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Leaes, E. X., Lima, D., Miklasevicius, L., Ramon, A. P., Dal Prá, V., Bassaco, M. M., Terra, L. M., & Mazutti, M. A. (2013). Effect of ultrasound-assisted irradiation on the activities of α-amylase and amyloglucosidase. Biocatalysis and Agricultural Biotechnology, 2(1), 21–25.

    Article  Google Scholar 

  • Li, C., Ban, X., Gu, Z., & Li, Z. (2013). Calcium ion contribution to thermostability of cyclodextrin glycosyltransferase is closely related to calcium-binding site CaIII. Journal of Agricultural and Food Chemistry, 61(37), 8836–8841.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Chen, C., Tao, Y., Huang, Y., Wang, P., & Han, Y. (2022). Changes in the structural and catalytic characteristics of α-amylase under moderate electric field. Food Hydrocolloids, 130, 107717.

    Article  CAS  Google Scholar 

  • Li, D., Huang, Y., Tao, Y., Xu, E., Zhang, R., & Han, Y. (2020). Effect of metal salts on α-amylase-catalyzed hydrolysis of broken rice under a moderate electric field. Food Research International, 137, 109707.

    Article  CAS  PubMed  Google Scholar 

  • Ma, H., Huang, L., Jia, J., He, R., Luo, L., & Zhu, W. (2011). Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochemistry, 18(1), 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Cai, J., & Liu, D. (2020). Ultrasound for pectinase modification: An investigation into potential mechanisms. Journal of the Science of Food and Agriculture, 100(12), 4636–4642.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Wang, W., Zou, M., Ding, T., Ye, X., & Liu, D. (2015). Properties and structures of commercial polygalacturonase with ultrasound treatment: Role of ultrasound in enzyme activation. RSC Advances, 5(130), 107591–107600.

    Article  CAS  Google Scholar 

  • Majid, I., Nayik, G. A., & Nanda, V. (2015). Ultrasonication and food technology: A review. Cogent Food & Agriculture, 1(1), 1071022.

    Article  Google Scholar 

  • Nadar, S. S., & Rathod, V. K. (2017). Ultrasound assisted intensification of enzyme activity and its properties: A mini-review. World Journal of Microbiology and Biotechnology, 33(9), 1–12.

    Article  CAS  Google Scholar 

  • Nielsen, A. D., Pusey, M. L., Fuglsang, C. C., & Westh, P. (2003). A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus α-amylase—The effect of calcium ions. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1652(1), 52–63.

  • Nwagu, T. N., Okolo, B., & Aoyagi, H. (2021). Immobilization of raw starch saccharifying amylase on glutaraldehyde activated chitin flakes increases the enzyme operation range. Bioresource Technology Reports, 13, 100645.

    Article  CAS  Google Scholar 

  • Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2011). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4(4), 610–615.

  • Oliveira, H. M., Correia, V. S., Segundo, M. A., Fonseca, A. J. M., & Cabrita, A. R. J. (2017). Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch. LWT, 84, 674–685.

    Article  CAS  Google Scholar 

  • Pan, S., Gu, Z., Ding, N., Zhang, Z., Chen, D., Li, C., Hong, Y., Cheng, L., & Li, Z. (2019). Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Food Chemistry, 283, 170–176.

    Article  CAS  PubMed  Google Scholar 

  • Pourmohammadi, K., Sayadi, M., & Abedi, E. (2023). Ultrasound-assisted activation amylase in the presence of calcium ion and effect on liquefaction process of dual frequency ultrasonicated potato starch. Journal of Food Measurement and Characterization, 1–15.

  • Radi, M., Abedi, E., Najafi, A., & Amiri, S. (2022). The effect of freezing-assisted cross-linking on structural and rheological properties of potato starch. International Journal of Biological Macromolecules, 222, 2775–2784.

    Article  CAS  PubMed  Google Scholar 

  • Rahimi, M., Moradi, N., Faryadi, M., & Safari, S. (2016). Removal of ammonia by high-frequency ultrasound wave (1.7 MHz) combined with TiO2 photocatalyst under UV radiation. Desalination and Water Treatment, 57(34), 15999–16007.

  • Roy, J. K., Manhar, A. K., Nath, D., Mandal, M., & Mukherjee, A. K. (2015). Cloning and extracellular expression of a raw starch digesting α-amylase (Blamy-I) and its application in bioethanol production from a non-conventional source of starch. Journal of Basic Microbiology, 55(11), 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  • Saboury, A. A., & Karbassi, F. (2000). Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochimica Acta, 362(1–2), 121–129.

    Article  CAS  Google Scholar 

  • Souza, M., Mezadri, E. T., Zimmerman, E., Leaes, E. X., Bassaco, M. M., Dal Prá, V., Foletto, E., Cancellier, A., Terra, L. M., & Jahn, S. L. (2013). Evaluation of activity of a commercial amylase under ultrasound-assisted irradiation. Ultrasonics Sonochemistry, 20(1), 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Subhedar, P. B., & Gogate, P. R. (2014). Enhancing the activity of cellulase enzyme using ultrasonic irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, 108–114.

    Article  CAS  Google Scholar 

  • Sulaiman, A. Z., Ajit, A., & Chisti, Y. (2013). Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnology Progress, 29(6), 1448–1457.

    Article  CAS  PubMed  Google Scholar 

  • Torabizadeh, H., Habibi-Rezaei, M., Safari, M., Moosavi-Movahedi, A. A., & Razavi, H. (2010). Semi-rational chemical modification of endoinulinase by pyridoxal 5′-phosphate and ascorbic acid. Journal of Molecular Catalysis B: Enzymatic, 62(3–4), 257–264.

    Article  CAS  Google Scholar 

  • Torabizadeh, H., & Mikani, M. (2018). Kinetic and thermodynamic features of nanomagnetic cross-linked enzyme aggregates of naringinase nanobiocatalyst in naringin hydrolysis. International Journal of Biological Macromolecules, 119, 717–725.

    Article  CAS  PubMed  Google Scholar 

  • Torabizadeh, H., & Montazeri, E. (2020). Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydrate Research, 488, 107904.

    Article  CAS  PubMed  Google Scholar 

  • Torabizadeh, H., Tavakoli, M., & Safari, M. (2014). Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. Journal of Molecular Catalysis B: Enzymatic, 108, 13–20.

    Article  CAS  Google Scholar 

  • Tran, T. T. T., Nguyen, K. T., & Le, V. V. M. (2018). Effects of ultrasonication variables on the activity and properties of alpha amylase preparation. Biotechnology Progress, 34(3), 702–710.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Ding, T., Ye, X., & Liu, D. (2018a). Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 119, 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Jin, Z., Liu, L., Wang, Z., Li, F., Sun, W., Cai, H., Chen, X., Shen, W., & Zhu, Z. (2018b). Inhibition of cyclodextrins on the activity of α-amylase. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90, 351–356.

    Article  CAS  Google Scholar 

  • Wang, J., Cao, Y., Sun, B., Wang, C., & Mo, Y. (2011). Effect of ultrasound on the activity of alliinase from fresh garlic. Ultrasonics Sonochemistry, 18(2), 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Yang, P., Shen, W., Wang, Z., Zhu, Z., Li, F., Barba, F. J., & Liu, L. (2019). Investigation on the interaction between γ-cyclodextrin and α-amylase. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 94, 103–109.

    Article  CAS  Google Scholar 

  • Wang, Z., Lin, X., Li, P., Zhang, J., Wang, S., & Ma, H. (2012). Effects of low intensity ultrasound on cellulase pretreatment. Bioresource Technology, 117, 222–227.

    Article  CAS  PubMed  Google Scholar 

  • Wei, W., Hu, W., Zhang, X.-Y., Zhang, F.-P., Sun, S.-Q., Liu, Y., & Xu, C.-H. (2018). Analysis of protein structure changes and quality regulation of surimi during gelation based on infrared spectroscopy and microscopic imaging. Scientific Reports, 8(1), 1–8.

    Google Scholar 

  • Xu, E., Wu, Z., Long, J., Wang, F., Pan, X., Xu, X., Jin, Z., & Jiao, A. (2015). Effect of thermostable α-amylase addition on the physicochemical properties, free/bound phenolics and antioxidant capacities of extruded hulled and whole rice. Food and Bioprocess Technology, 8(9), 1958–1973.

    Article  CAS  Google Scholar 

  • Yu, Z.-L., Zeng, W.-C., & Lu, X.-L. (2013). Influence of ultrasound to the activity of tyrosinase. Ultrasonics Sonochemistry, 20(3), 805–809.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z.-L., Zeng, W.-C., Zhang, W.-H., Liao, X.-P., & Shi, B. (2014). Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrasonics Sonochemistry, 21(3), 930–936.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S., Yan, R., Lin, B., Li, R., & Ye, X. (2023). Improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. Biochemical and Biophysical Research Communications, 653, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Wang, L., Shen, Q., Wu, B., & Gao, P. (2011). A novel approach for estimating the relationship between the kinetics and thermodynamics of glycoside hydrolases. Acta Biochimica Et Biophysica Sinica, 43(5), 409–417.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Elahe Abedi wrote the manuscript conceived and designed the research, analyzed data d Writing – review & editing. Homa Torabizadeh and conceived and designed the research and analyzed the data. Luciano Orden: Data curation, Writing – review & editing. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Elahe Abedi or Homa Torabizadeh.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, E., Torabizadeh, H. & Orden, L. Enhancement of Alpha-amylase’s Stability and Catalytic Efficiency After Modifying Enzyme Structure Using Calcium and Ultrasound. Food Bioprocess Technol 17, 1546–1562 (2024). https://doi.org/10.1007/s11947-023-03213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03213-y

Keywords

Navigation