Skip to main content
Log in

Ultrafiltration for Homogenization of Wheat Germ Oil:Water System: Droplet Size Distribution and Stability of Emulsion

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Wheat germ oil (WGO) in water emulsion is increasingly being used in a variety of fields due to its outstanding nutritional and health benefits. To enhance WGO composability, emulsification should be performed to allow them to dissolve more easily in food matrix or active packaging. Membrane emulsification is a promising advanced homogenization technology that has recently been developed. This research focused on application of membrane emulsification for homogenization of WGO-in-water emulsion by polyether sulfone (PESU) membrane with 0.45 µm of pore size, operating pressure from 5 to 9 bar, WGO fraction in range 10–20% w/w, and lecithin ratio in range 0–0.2% w/v were evaluated on the mean of particle diameters, distribution of particle diameter, stability of emulsion, and permeate flux. Higher operating pressure led to smaller mean particle diameters and higher homogenization efficiency and permeate flux. However, increasing the WGO fraction showed the opposite trend. Notably, increasing lecithin ratio from 0 to 0.2%, the mean particle diameters increased from 3.36 to 7.72 µm, homogenization efficiency decreased from 98.54 to 97.68%, and permeate flux decreased from 105.95 to 77.45 L h−1 m−2. The results showed the advantage of using PESU membrane in WGO-in-water homogenization, that produce emulsions with small particle size (50% of particle volume was less than 5 µm), high emulsion stability (greater than 95%), and lower emulsifier usage. Results imply premix membrane emulsification is potential to apply homogenization WGO-in-water emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  • Al-Rimawi, F., Alayoubi, M., & Elama, claude, Jazzar, M., & Çakıcı, A. (2020). Use of cinnamon, wheat germ, and eucalyptus oils to improve quality and shelf life of concentrated yogurt (Labneh). Cogent Food & Agriculture, 6(1), 1807810.

    Article  CAS  Google Scholar 

  • Alliod, O., Valour, J.-P., Urbaniak, S., Fessi, H., Dupin, D., & Charcosset, C. (2018). Preparation of oil-in-water nanoemulsions at large-scale using premix membrane emulsification and Shirasu Porous Glass (SPG) membranes. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 557, 76–84.

    Article  CAS  Google Scholar 

  • Aserin, A. (2007). Multiple emulsion: Technology and applications (Vol. 1). John Wiley & Sons.

  • Barros, J. C., Munekata, P. E. S., de Carvalho, F. A. L., Domínguez, R., Trindade, M. A., Pateiro, M., & Lorenzo, J. M. (2021). Healthy beef burgers: Effect of animal fat replacement by algal and wheat germ oil emulsions. Meat Science, 173, 108396.

    Article  CAS  PubMed  Google Scholar 

  • Berendsen, R., Güell, C., Henry, O., & Ferrando, M. (2014). Premix membrane emulsification to produce oil-in-water emulsions stabilized with various interfacial structures of whey protein and carboxymethyl cellulose. Food Hydrocolloids, 38, 1–10.

    Article  CAS  Google Scholar 

  • Bodewes, F. A. J. A., Wouthuyzen-Bakker, M., & Verkade, H. J. (2015). Chapter 41 - Persistent fat malabsorption in cystic fibrosis. In R. R. B. T.-D. and E. in C. F. Watson (Ed.), (pp. 373–381). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-800051-9.00041-9

  • Boukid, F., Folloni, S., Ranieri, R., & Vittadini, E. (2018). A compendium of wheat germ: Separation, stabilization and food applications. Trends in Food Science & Technology, 78, 120–133.

    Article  CAS  Google Scholar 

  • Brandolini, A., & Hidalgo, A. (2012). Wheat germ: Not only a by-product. International Journal of Food Sciences and Nutrition, 63(sup1), 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Ceylan, Z., Meral, R., Kose, Y. E., & Cavidoglu, I. (2020). Wheat germ oil nanoemulsion for oil stability of the cooked fish fillets stored at 4° C. Journal of Food Science and Technology, 57(5), 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  • Charcosset, C., Limayem, I., & Fessi, H. (2004). The membrane emulsification process—A review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(3), 209–218.

    Article  CAS  Google Scholar 

  • Charcosset, C. (2009). Preparation of emulsions and particles by membrane emulsification for the food processing industry. Journal of Food Engineering, 92(3), 241–249.

    Article  CAS  Google Scholar 

  • Charcosset, C. (2021). Classical and recent applications of membrane processes in the food industry. Food Engineering Reviews, 13(2), 322–343.

    Article  CAS  Google Scholar 

  • Choi, B.-S., & Kang, K.-O. (2009). Studies on the analysis of physiological and antimicrobial activity of wheat germ. Journal of the East Asian Society of Dietary Life, 19(4), 585–592.

    Google Scholar 

  • Choi, S. J., & McClements, D. J. (2020). Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology, 29(2), 149–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consoli, L., Hubinger, M. D., & Dragosavac, M. M. (2020). Encapsulation of resveratrol using Maillard conjugates and membrane emulsification. Food Research International, 137, 109359. https://doi.org/10.1016/j.foodres.2020.109359

  • Dunford, N. T. (2009). Wheat germ oil. In Gourmet and health-promoting specialty oils (pp. 359–376). Elsevier.

  • Ezzati, A., Gorouhi, E., & Mohammadi, T. (2005). Separation of water in oil emulsions using microfiltration. Desalination, 185(1–3), 371–382.

    Article  CAS  Google Scholar 

  • Floury, J., Desrumaux, A., & Lardières, J. (2000). Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science & Emerging Technologies, 1(2), 127–134.

    Article  CAS  Google Scholar 

  • Galanakis, C. M. (2019). Nutraceuticals and natural product pharmaceuticals. Academic Press.

    Google Scholar 

  • Ghafoor, K., Özcan, M. M., & AL-Juhaımı, F., Babıker, E. E., Sarker, Z. I., Ahmed, I. A. M., & Ahmed, M. A. (2017). Nutritional composition, extraction, and utilization of wheat germ oil: A review. European Journal of Lipid Science and Technology, 119(7), 1600160.

    Article  CAS  Google Scholar 

  • Harrabi, S., Ferchichi, A., Fellah, H., Feki, M., & Hosseinian, F. (2021). Chemical composition and in vitro anti-inflammatory activity of wheat germ oil depending on the extraction procedure. Journal of Oleo Science, 70(8), 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Jha, P. K., Kudachikar, V. B., & Kumar, S. (2013). Lipase inactivation in wheat germ by gamma irradiation. Radiation Physics and Chemistry, 86, 136–139.

    Article  CAS  Google Scholar 

  • Jiang, T., Liao, W., & Charcosset, C. (2020). Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International, 132, 109035. https://doi.org/10.1016/j.foodres.2020.109035

  • Joscelyne, S. M., & Trägårdh, G. (2000). Membrane emulsification—A literature review. Journal of Membrane Science, 169(1), 107–117.

    Article  CAS  Google Scholar 

  • Karadeniz, M., Sahin, S., & Sumnu, G. (2018). Enhancement of storage stability of wheat germ oil by encapsulation. Industrial Crops and Products, 114, 14–18.

    Article  CAS  Google Scholar 

  • Koba, K., & Yanagita, T. (2014). Health benefits of conjugated linoleic acid (CLA). Obesity Research & Clinical Practice, 8(6), e525–e532.

    Article  Google Scholar 

  • Köse, Y. E. (2021). Degradation kinetic modeling of bioactive compounds and enzyme activity in wheat germ during stabilization. LWT, 112501.

  • Lai, D. Q., Huynh, T. T. L., Doan, T. N. T., & Nguyen, D. H. (2022). Particle size distribution and homogenization efficiency in high pressure homogenization of wheat germ oil: Water system. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.15760

    Article  Google Scholar 

  • Lloyd, D. M., Norton, I. T., & Spyropoulos, F. (2014). Processing effects during rotating membrane emulsification. Journal of Membrane Science, 466, 8–17.

    Article  CAS  Google Scholar 

  • Major-Godlewska, M. (2019). Evaluation of drops dimensions in time and rheological properties of the multiple emulsion. Chemical Papers, 73(8), 2073–2080.

    Article  CAS  Google Scholar 

  • Manga, M. S., & York, D. W. (2017). Production of concentrated Pickering emulsions with narrow size distributions using stirred cell membrane emulsification. Langmuir, 33(36), 9050–9056.

    Article  CAS  PubMed  Google Scholar 

  • Megahed, M. G. (2011). Study on stability of wheat germ oil and lipase activity of wheat germ during periodical storage. Agric Biol JN Am, 2(1), 163–168.

    Article  CAS  Google Scholar 

  • Nazir, A., Maan, A. A., Sahin, S., Boom, R. M., & Schroën, K. (2015). Foam preparation at high-throughput using a novel packed bed system. Food and Bioproducts Processing, 94, 561–564.

    Article  CAS  Google Scholar 

  • Nazir, A., Schroën, K., & Boom, R. (2011). High-throughput premix membrane emulsification using nickel sieves having straight-through pores. Journal of Membrane Science, 383(1–2), 116–123.

    Article  CAS  Google Scholar 

  • Piacentini, E., Bazzarelli, F., Drioli, E., & Giorno, L. (2020). Advances in membrane emulsification and membrane nanoprecipitation using membrane contactors: State-of-the-art and perspectives. In Hollow Fiber Membrane Contactors, 143–158. CRC Press.

  • Piacentini, E., & Giorno, L. (2016). Emulsification by membrane operations BT - Encyclopedia of membranes. In E. Drioli & L. Giorno (Eds.), (pp. 675–678). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44324-8_1233

  • Ramakrishnan, S., Ferrando, M., Aceña-Muñoz, L., De Lamo-Castellví, S., & Güell, C. (2013). Fish oil microcapsules from O/W emulsions produced by premix membrane emulsification. Food and Bioprocess Technology, 6(11), 3088–3101.

    Article  CAS  Google Scholar 

  • Ransmark, E., Svensson, B., Svedberg, I., Göransson, A., & Skoglund, T. (2019). Measurement of homogenisation efficiency of milk by laser diffraction and centrifugation. International Dairy Journal, 96, 93–97.

    Article  CAS  Google Scholar 

  • Salminen, H., Bischoff, S., & Weiss, J. (2020). Formation and stability of emulsions stabilized by Quillaja saponin–egg lecithin mixtures. Journal of Food Science, 85(4), 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  • Schröder, V., Behrend, O., & Schubert, H. (1998). Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. Journal of Colloid and Interface Science, 202(2), 334–340.

    Article  Google Scholar 

  • Schultz, S., Wagner, G., Urban, K., & Ulrich, J. (2004). High-pressure homogenization as a process for emulsion formation. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 27(4), 361–368.

    Article  CAS  Google Scholar 

  • Spasic, A. M., & Hsu, J.-P. (2005). Finely dispersed particles: Micro-, nano-, and atto-engineering. CRC Press.

    Book  Google Scholar 

  • Spyropoulos, F., Lloyd, D. M., Hancocks, R. D., & Pawlik, A. K. (2014). Advances in membrane emulsification. Part A: Recent developments in processing aspects and microstructural design approaches. Journal of the Science of Food and Agriculture, 94(4), 613–627. https://doi.org/10.1002/jsfa.6444

  • Šramková, Z., Gregová, E., & Šturdík, E. (2009). Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca, 2(1), 115–138.

    Google Scholar 

  • Surh, J., Jeong, Y. G., & Vladisavljević, G. T. (2008). On the preparation of lecithin-stabilized oil-in-water emulsions by multi-stage premix membrane emulsification. Journal of Food Engineering, 89(2), 164–170. https://doi.org/10.1016/j.jfoodeng.2008.04.023

    Article  CAS  Google Scholar 

  • Suzuki, K., Fujiki, I., & Hagura, Y. (1998). Preparation of corn oil/water and water/corn oil emulsions using PTFE membranes. Food Science and Technology International, Tokyo, 4(2), 164–167.

    Article  Google Scholar 

  • Suzuki, K., Shuto, I., & Hagura, Y. (1996). Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions. Food Science and Technology International, Tokyo, 2(1), 43–47.

    Article  CAS  Google Scholar 

  • Thiex, N. J., Anderson, S., Gildemeister, B., & M Collaborators: Adcock W., Boedigheimer J., Bogren E., Coffin R., Conway K., DeBaker A., Frankenius E., Gramse M., Hogan P., Knese T., MacDonald J., Möler J., Royle R., Russell M., Shafiee F., Shreve B., Sieh J., Spann M., Töpler E., W. M. (2003). Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. Journal of AOAC International, 86(5), 899–908.

    Article  CAS  PubMed  Google Scholar 

  • Türkoğlu, G. C., Sarıışık, M., Karavana, S. Y., & Köse, F. A. (2021). Production of wheat germ oil containing multilayer hydrogel dressing. Carbohydrate Polymers, 118287.

  • Van der Graaf, S., Schroën, C., Van der Sman, R. G. M., & Boom, R. M. (2004). Influence of dynamic interfacial tension on droplet formation during membrane emulsification. Journal of Colloid and Interface Science, 277(2), 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Vladisavljević, G. T. (2019a). Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 579, 123709.

    Article  CAS  Google Scholar 

  • Vladisavljević, G. T. (2019b). Membrane emulsification in pharmaceutics and biotechnology. In Current Trends and Future Developments on (Bio-) Membranes (pp. 167–222). Elsevier.

  • Vladisavljević, G. T., Shimizu, M., & Nakashima, T. (2004). Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification. Journal of Membrane Science, 244(1–2), 97–106.

    Article  CAS  Google Scholar 

  • Vladisavljević, G. T., & Williams, R. A. (2005). Recent developments in manufacturing emulsions and particulate products using membranes. Advances in Colloid and Interface Science, 113(1), 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Tang, J., Ruan, S., Lv, R., Zhou, J., Tian, J., et al. (2021). A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application. Food Chemistry, 130066.

  • Yan, B., Park, S. H., & Balasubramaniam, V. M. (2017). Influence of high pressure homogenization with and without lecithin on particle size and physicochemical properties of whey protein-based emulsions. Journal of Food Process Engineering, 40(6), e12578.

    Article  CAS  Google Scholar 

  • Zanatta, V., Rezzadori, K., Penha, F. M., Zin, G., Lemos-Senna, E., Petrus, J. C. C., & Di Luccio, M. (2017). Stability of oil-in-water emulsions produced by membrane emulsification with microporous ceramic membranes. Journal of Food Engineering, 195, 73–84.

    Article  CAS  Google Scholar 

  • Zhu, K.-X., Lian, C.-X., Guo, X.-N., Peng, W., & Zhou, H.-M. (2011). Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chemistry, 126(3), 1122–1126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and Affiliations

Authors

Contributions

Q.D.L and H.D.N designed and directed the project. Q.D.L. and N.T.T.D. wrote the main manuscript text. T.T.L.H. processed the experimental data and performed the analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Quoc Dat Lai.

Ethics declarations

Ethical Approval

Ethics approval was not required for this research.

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Q.D., Huynh, T.T.L., Doan, N.T.T. et al. Ultrafiltration for Homogenization of Wheat Germ Oil:Water System: Droplet Size Distribution and Stability of Emulsion. Food Bioprocess Technol 15, 1539–1549 (2022). https://doi.org/10.1007/s11947-022-02832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02832-1

Keywords

Navigation