Skip to main content
Log in

Fabrication and Characterization of Gluten Film Reinforced by Lycopene-Loaded Electrospun Polylactic Acid Nano-fibers

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Reinforced edible gluten film was successfully prepared by the addition of polylactic acid (PLA) nano-fibers to improve their mechanical and barrier properties. Scanning electron microscopy (SEM) of the transverse cross-section of gluten film was performed to investigate the binding of PLA fibers to the surface of gluten film. It was observed that the nano-fibers attached to the surface of the gluten film could improve by 13.9% in the barrier properties and up to 29.3% in the mechanical properties compared to the control gluten film. The effect of ultraviolet light exposure on the tensile strength and water vapor barrier properties, as well as the stability of lycopene encapsulated in PLA nano-fibers, was investigated. It was shown that PLA nano-fibers in gluten film reduce UV light’s harmful effect on the water vapor barrier properties by up to 6.8% and on the tensile strength up to 23.5% compared to the control film. The results also showed that the treatment of lycopene with ultraviolet light, unlike the control sample (55.7% degradation in lycopene), had no destructive effect on the antioxidant activity of lycopene. Finally, the rate of release of lycopene was studied in fatty food simulants. It was observed in gluten/PLA film that the encapsulation of lycopene in PLA nano-fibers has a much lower rate of release than the direct addition of lycopene to gluten film. Gluten film containing electrospun nano-fibers showed a release rate of lycopene about 31.8% at approximately 90 h. However, the sample of nano-fibers-free gluten film had a release rate of 48.5% at the same time. This result is beneficial for active food packaging because it allows food to be stored for longer in the packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48–59.

    CAS  Google Scholar 

  • Assis, R. Q., Rios, P. D. A., de Oliveira, R. A., Olivera, F. C. J. I. C., & Products. (2020). Biodegradable packaging of cellulose acetate incorporated with norbixin, lycopene or zeaxanthin. Industrial Crops and Products, 147, 112212.

    CAS  Google Scholar 

  • Aydogdu, A., Yildiz, E., Ayhan, Z., Aydogdu, Y., Sumnu, G., & Sahin, S. (2019). Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry. European Polymer Journal., 112, 477–486.

    CAS  Google Scholar 

  • Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering., 100(2), 239–244.

    CAS  Google Scholar 

  • Cai, J., Chen, J., Zhang, Q., Lei, M., He, J., Xiao, A., Ma, C., Li, S., & Xiong, H. (2016). Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties. Carbohydrate Polymers., 140, 238–245.

    CAS  PubMed  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technology., 4(6), 849–875.

    CAS  Google Scholar 

  • Ceresino, E. B., Kuktaite, R., Sato, H. H., Hedenqvist, M. S., & Johansson, E. (2019). Impact of gluten separation process and transglutaminase source on gluten based dough properties. Food Hydrocolloids, 87, 661–669.

    CAS  Google Scholar 

  • Cerqueira, M. A., Fabra, M. J., Castro-Mayorga, J. L., Bourbon, A. I., Pastrana, L. M., Vicente, A. A., & Lagaron, J. M. (2016). Use of electrospinning to develop antimicrobial biodegradable multilayer systems: Encapsulation of cinnamaldehyde and their physicochemical characterization. Food Bioprocess Technology., 9(11), 1874–1884.

    CAS  Google Scholar 

  • Chavoshizadeh, S., Pirsa, S., Mohtarami, F. J. F. P., & Life, S. (2020). Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life., 24, 100501.

    Google Scholar 

  • Cheng, S.-Y., Wang, B.-J., & Weng, Y.-M. (2015). Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT - Food Science and Technology., 63(1), 115–121.

    CAS  Google Scholar 

  • Cho, S.-W., Gällstedt, M., & Hedenqvist, M. S. (2010). Properties of wheat gluten/poly (lactic acid) laminates. Journal of Agricultural and Food Chemistry., 58(12), 7344–7350.

    CAS  PubMed  Google Scholar 

  • Cicco, N., Lanorte, M. T., Paraggio, M., Viggiano, M., & Lattanzio, V. (2009). A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91(1), 107–110.

    CAS  Google Scholar 

  • Crouvisier-Urion, K., Lagorce-Tachon, A., Lauquin, C., Winckler, P., Tongdeesoontorn, W., Domenek, S., Debeaufort, F., & Karbowiak, T. (2017). Impact of the homogenization process on the structure and antioxidant properties of chitosan-lignin composite films. Food Chemistry., 236, 120–126.

    CAS  PubMed  Google Scholar 

  • Ebrahimi, S., Fathi, M., & Kadivar, M. (2019). Production and characterization of chitosan-gelatin nano-fibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packaging and Shelf Life., 22, 100387.

    Google Scholar 

  • Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2015a). Effect of the film-processing conditions, relative humidity and ageing on wheat gluten films coated with electrospun polyhydryalkanoate. Food Hydrocolloids, 44, 292–299.

    CAS  Google Scholar 

  • Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2015b). Three-layer films based on wheat gluten and electrospun PHA. Food Bioprocess Technology., 8(11), 2330–2340.

    CAS  Google Scholar 

  • Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., Buontempo, R. C., Bilck, A. P., & Innocentini Mei, L. H. (2018). The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT., 87, 293–300.

    CAS  Google Scholar 

  • Ghosal, K., Chandra, A., G, P., S, S., Roy, S., Agatemor, C., Thomas, S., & Provaznik, I. (2018). Electrospinning over solvent casting: Tuning of mechanical properties of membranes. Scientific Reports, 8(1), 5058.

    PubMed  PubMed Central  Google Scholar 

  • Girard, A. L., Teferra, T., & Awika, J. M. (2019). Effects of condensed vs hydrolysable tannins on gluten film strength and stability. Food Hydrocolloids, 89, 36–43.

    CAS  Google Scholar 

  • Guo, M., Jin, T. Z., & Yang, R. (2014). Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food Bioprocess Technology., 7(11), 3293–3307.

    CAS  Google Scholar 

  • Iñiguez-Franco, F., Auras, R., Burgess, G., Holmes, D., Fang, X., Rubino, M., & Soto-Valdez, H. (2016). Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer., 99, 315–323.

    Google Scholar 

  • Jamshidian, M., Tehrany, E. A., & Desobry, S. (2013). Antioxidants release from solvent-cast PLA film: Investigation of PLA antioxidant-active packaging. Food Bioprocess Technology., 6(6), 1450–1463.

    CAS  Google Scholar 

  • Kang, D. H., & Kang, H. W. (2018). Advanced electrospinning using circle electrodes for freestanding PVDF nano-fiber film fabrication. Applied Surface Science., 455, 251–257.

    CAS  Google Scholar 

  • Kasza, G., Szabó-Bódi, B., Lakner, Z., & Izsó, T. (2018). Balancing the desire to decrease food waste with requirements of food safety. Trends in Food Science & Technology.

  • Kristo, E., & Biliaderis, C. G. (2006). Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: Caseinate–pullulan bilayers and blends. Food Hydrocolloids, 20(7), 1057–1071.

    CAS  Google Scholar 

  • Liu, C.-C., Tellez-Garay, A. M., & Castell-Perez, M. E. (2004). Physical and mechanical properties of peanut protein films. LWT - Food Science and Technology., 37(7), 731–738.

    CAS  Google Scholar 

  • Liu, J., Liu, S., Wu, Q., Gu, Y., Kan, J., & Jin, C. (2017). Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids, 73, 90–100.

    CAS  Google Scholar 

  • Lyu, Y., Pang, J., Gao, Z., Zhang, Q., & Shi, X. (2019). Characterization of the compatibility of PVC/PLA blends by aid of rheological responses. Polymer., 176, 20–29.

    CAS  Google Scholar 

  • Ma, Q., Ren, Y., & Wang, L. (2017). Investigation of antioxidant activity and release kinetics of curcumin from tara gum/ polyvinyl alcohol active film. Food Hydrocolloids, 70, 286–292.

    CAS  Google Scholar 

  • Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese TO. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules., 99, 37–45.

    CAS  PubMed  Google Scholar 

  • Neves-Petersen MT, Petersen S & Gajula GP (2012) UV light effects on proteins: From photochemistry to nanomedicine. In: Molecular photochemistry-various aspects. p^pp. IntechOpen.

  • Pan, F., Chen, L., Jiang, Y., Xiong, L., Min, L., Xie, J., Qi, J., Xiao, H., Chen, Y., & Cornelis, F. (2018). Bio-based UV protective films prepared with polylactic acid (PLA) and Phoebe zhennan extractives. International Journal of Biological Macromolecules., 119, 582–587.

    CAS  PubMed  Google Scholar 

  • Pu, C., & Tang, W. (2017). Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement. Food Chemistry., 235, 283–289.

    CAS  PubMed  Google Scholar 

  • Qin, Z.-y., Jia, X.-W., Liu, Q., Kong, B.-h., & Wang, H. (2019). Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nano-fibers. International Journal of Biological Macromolecules., 137, 224–231.

    CAS  PubMed  Google Scholar 

  • Rafieian, F., Shahedi, M., Keramat, J., & Simonsen, J. (2014). Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Industrial Crops and Products, 53, 282–288.

    CAS  Google Scholar 

  • Romani, V. P., Olsen, B., Pinto Collares, M., Meireles Oliveira, J. R., Prentice-Hernández, C., & Guimarães Martins, V. (2019). Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids, 87, 970–976.

    CAS  Google Scholar 

  • Rompothi, O., Pradipasena, P., Tananuwong, K., Somwangthanaroj, A., & Janjarasskul, T. (2017). Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability. Carbohydrate Polymers., 157, 748–756.

    CAS  PubMed  Google Scholar 

  • Schmatz, D. A., Costa, J. A. V., & Morais, M. G. (2019). A novel nanocomposite for food packaging developed by electrospinning and electrospraying. Food Packaging and Shelf Life., 20, 100314.

    Google Scholar 

  • Schmid, M., Zillinger, W., Müller, K., & Sängerlaub, S. (2015). Permeation of water vapour, nitrogen, oxygen and carbon dioxide through whey protein isolate based films and coatings—Permselectivity and activation energy. Food Packaging and Shelf Life., 6, 21–29.

    Google Scholar 

  • Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B., & Medronho, B. (2019). Cellulose-based edible films for probiotic entrapment. Food Hydrocolloids, 88, 68–74.

    CAS  Google Scholar 

  • Sofi, H. S., Ashraf, R., Khan, A. H., Beigh, M. A., Majeed, S., & Sheikh, F. A. (2019). Reconstructing nano-fibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Materials Science and Engineering: C., 94, 1102–1124.

    CAS  Google Scholar 

  • Tampau, A., González-Martínez, C., Vicente, A. A., & Chiralt, A. (2020). Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolisation. Food Bioprocess Technology, 1–14.

  • Vonasek, E., Le, P., & Nitin, N. (2014). Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocolloids, 37, 7–13.

    CAS  Google Scholar 

  • Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G. M., Kenny, J. M., & Puglia, D. (2016). Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules., 89, 360–368.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Wang, Z., Xiao, Y., Liu, P., Wang, S., Zhao, Y., Shen, M., & Shi, X. (2018). Electrospun PEGylated PLGA nano-fibers for drug encapsulation and release. Materials Science and Engineering: C., 91, 255–262.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Emam-Djomeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajikhani, M., Emam-Djomeh, Z. & Askari, G. Fabrication and Characterization of Gluten Film Reinforced by Lycopene-Loaded Electrospun Polylactic Acid Nano-fibers. Food Bioprocess Technol 13, 2217–2227 (2020). https://doi.org/10.1007/s11947-020-02561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02561-3

Keywords

Navigation