Skip to main content
Log in

Waxy Wheat Flour as a Freeze-Thaw Stable Ingredient Through Rheological Studies

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A large variety of foods including soups, sauces, and other items that may experience freezing use specialty ingredients to prevent negative effects of freezing. While multiple modified starches derived from maize are available to do this, unmodified flours that may be able to carry a “natural” label are not used widely. To begin to analyze whether other alternative solutions are possible in unutilized flours, waxy wheat flour was subjected to freeze-thaw characterization through rheology to provide insight to textural changes that may occur. In order to determine freeze-thaw-induced changes, gelatinized solutions of waxy and regular wheat flours were subjected to shear rate sweeps, oscillatory rheological tests, and large amplitude oscillatory shear testing before and after freeze-thaw cycles. Minimal changes in rheological behaviors were observed in waxy wheat samples compared to regular wheat samples. Waxy wheat flour was also analyzed through differential scanning calorimetry both before and after being subjected to ten freeze-thaw cycles. Syneresis effects were also determined after each freeze-thaw cycle. Waxy wheat exhibited <5% water loss while regular wheat showed 25–40% water loss. Differential scanning calorimetry after freeze-thaw cycles were found to exhibit negligible retrogradation enthalpy values in waxy wheat samples as compared to 1.3–1.8 J/g in regular wheat samples. Results suggested that waxy wheat can serve as a novel and natural food ingredient for freeze-thaw stabilization in foods such as soups, dressings, and frozen meals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Aal, E.-S. M., Hucl, P., Chibbar, R. N., Han, H. L., & Demeke, T. (2002). Physiochemical and structural characteristics of flours and staches from waxy and nonwaxy wheats. Cereal Chemistry., 79(3), 458–464.

    Article  CAS  Google Scholar 

  • Alvarez, M. D., Fernández, C., & Canet, W. (2010). Oscillatory rheological properties of fresh and frozen/thawed mashed potatoes as modified by different cryoprotectants. Food and Bioprocess Technology., 3(1), 55–70.

    Article  CAS  Google Scholar 

  • Bhattacharya, M., Erazo-Castrejon, S. V., Doehlert, D. C., & McMullen, M. S. (2002). Staling of bread as affected by waxy wheat flour blends. Cereal Chemistry., 79(2), 178–182.

    Article  CAS  Google Scholar 

  • Bhattacharya, M., Langstaff, T. M., & Berzonsky, W. A. (2003). Effect of frozen storage and freeze–thaw cycles on the rheological and baking properties of frozen doughs. Food Research International., 36(4), 365–372.

    Article  Google Scholar 

  • Campanella, O. H., & Peleg, M. (1987). Determination of the yield stress of semi-liquid foods from squeezing flow data. Journal of Food Science., 52(1), 214–215.

    Article  Google Scholar 

  • Chakraborty, M., Matkovic, K., Grier, D. G., Jarabek, E. L., Berzonsky, W. A., McMullen, M. S., & Doehlert, D. C. (2004). Physicochemical and functional properties of tetraploid and hexaploid waxy wheat starch. Starch-Stärke., 56(8), 339–347.

    Article  CAS  Google Scholar 

  • Eleya, M. O., & Turgeon, S. (2000). Rheology of κ-carrageenan and β-lactoglobulin mixed gels. Food Hydrocolloids, 14(1), 29–40.

    Article  Google Scholar 

  • Ewoldt RH, Winter P & McKinley GH (2007) MITlaos Version 2.1 Beta for MATLAB. MATLAB-based data analysis software for characterizing nonlinear viscoelastic responses to oscillatory shear strain. In. p^pp. self-published, Cambridge, MA.

  • Ewoldt, R. H., Hosoi, A., & McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology (1978-present)., 52(6), 1427–1458.

    Article  CAS  Google Scholar 

  • Graybosch, R. A. (1998). Waxy wheat: Origin, properties and prospects. Trends in Food Science & Technology., 9, 135–142.

    Article  CAS  Google Scholar 

  • Graybosch RA & Hansen LE (2015) Functionality of chemically modified waxy, partial waxy and wild-type starches from common wheat. Starch-Stärke.

    Google Scholar 

  • Graybosch, R. A., Ohm, J.-B., & Dykes, L. (2016). Observations on the quality characteristics of waxy (amylose-free) winter wheats. Cereal Chemistry Journal., 93(6), 599–604.

    Article  CAS  Google Scholar 

  • Guzman, C., & Alvarez, J. B. (2016). Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theoretical and Applied Genetics, 129(1), 1–16.

    Article  CAS  Google Scholar 

  • Hayakawa, K., Tanaka, K., Nakamura, T., Endo, S., & Hoshino, T. (2004). End use quality of waxy wheat flour in various grain-based foods. Cereal Chemistry., 81, 666–672.

    Article  CAS  Google Scholar 

  • Joyner (Melito), H. S., & Meldrum, A. (2016). Rheological study of different mashed potato preparations using large amplitude oscillatory shear and confocal microscopy. Journal of Food Engineering., 169, 326–337.

    Article  Google Scholar 

  • Kowalski, R. J., Morris, C. F., & Ganjyal, G. M. (2015). Waxy soft white wheat: extrusion characteristics and thermal and rheological properties. Cereal Chemistry., 92(2), 145–153.

    Article  CAS  Google Scholar 

  • Lim, T., Uhl, J. T., & Prud'homme, R. K. (1984). Rheology of self-associating concentrated xanthan solutions. Journal of Rheology (1978-present)., 28(4), 367–379.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J., & Ding, Y. (2014). Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocolloids, 36, 45–52.

    Article  CAS  Google Scholar 

  • Mariotti, M., Sinelli, N., Catenacci, F., Pagani, M. A., & Lucisano, M. (2009). Retrogradation behaviour of milled and brown rice pastes during ageing. Journal of Cereal Science., 49(2), 171–177.

    Article  CAS  Google Scholar 

  • Melito, H. S., Daubert, C. R., & Foegeding, E. A. (2012). Validation of a large amplitude oscillatory shear protocol. Journal of Food Engineering., 113(1), 124–135.

    Article  Google Scholar 

  • Morita, N., Maeda, T., Miyazaki, M., Yamamori, M., Miura, H., & Ohtsuka, I. (2002). Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chemistry., 79(4), 491–495.

    Article  CAS  Google Scholar 

  • Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S., & Nagamine, T. (1995). Production of waxy (amylose-free) wheats. Molecular and General Genetics., 248(3), 253–259.

    Article  CAS  Google Scholar 

  • Nakamura T, Vrinten P, Shimbata T & Saito M (2015) Starch modification: a model for wheat MAS breeding. 265–273.

  • Reddy, I., & Seid, P. A. (2000). Modified waxy wheat starch compared to modified waxy corn starch. Journal of Cereal Science., 31(1), 25–39.

    Article  CAS  Google Scholar 

  • Rosalina, I., & Bhattacharya, M. (2002). Dynamic rheological measurements and analysis of starch gels. Carbohydrate Polymers., 48(2), 191–202.

    Article  CAS  Google Scholar 

  • Sasaki, T., Yasui, T., Matsuki, J., & Sataki, T. (2002). Rheological properties of mixed gels using waxy and non-waxy wheat starch. Starch-Stärke., 54(9), 410–414.

    Article  CAS  Google Scholar 

  • Sayaslan, A., Seib, P. A., & Chung, O. K. (2006). Wet-milling properties of waxy wheat flours by two laboratory methods. Journal of Food Engineering., 72(2), 167–178.

    Article  CAS  Google Scholar 

  • Schmidt, K. A., Herald, T. J., & Khatib, K. A. (2001). Modified wheat starches used as stabilizers in set-style yogurt. Journal of Food Quality., 24(5), 421–434.

    Article  CAS  Google Scholar 

  • Van Hung, P., Maeda, T., & Morita, N. (2006). Waxy and high-amylose wheat starches and flours—characteristics, functionality and application. Trends in Food Science & Technology., 17(8), 448–456.

    Article  CAS  Google Scholar 

  • White, P. J., Abbas, I. R., & Johnson, L. A. (1989). Freeze-thaw stability and refrigerated-storage retrogradation of starches. Starch - Stärke., 41(5), 176–180.

    Article  CAS  Google Scholar 

  • Yi, J., Kerr, W. L., & Johnson, J. W. (2009). Effects of waxy wheat flour and water on frozen dough and bread properties. Journal of Food Science., 74(5), E278–E284.

    Article  CAS  Google Scholar 

  • Yoo, S.-H., & Jane, J.-L. (2002). Structural and physical characteristics of waxy and other wheat starches. Carbohydrate Polymers., 49(3), 297–305.

    Article  CAS  Google Scholar 

  • Zeng, M., Morris, C. F., Batey, I. L., & Wrigley, C. W. (1997). Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chemistry., 74(1), 63–71.

    Article  CAS  Google Scholar 

  • Zheng, G. H., & Sosulski, F. W. (1998). Determination of water separation from cooked starch and flour pastes after refrigeration and freeze-thaw. Journal of Food Science., 63(1), 134–139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the new faculty seed grant through Washington State University and University of Idaho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Ganjyal.

Appendix

Appendix

Table 6 LAOS elastic parameters for waxy wheat flour (Wx1) both before and after freeze-thaw cycling
Table 7 LAOS elastic parameters for wheat flour (R1) both before and after freeze-thaw cycling
Table 8 LAOS elastic parameters for waxy wheat flour (Wx3) both before and after freeze-thaw cycling
Table 9 LAOS elastic parameters for waxy wheat flour (Wx4) both before and after freeze-thaw cycling
Table 10 LAOS elastic parameters for wheat flour (R2) both before and after freeze-thaw cycling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalski, R.J., Meldrum, A., Wang, S. et al. Waxy Wheat Flour as a Freeze-Thaw Stable Ingredient Through Rheological Studies. Food Bioprocess Technol 10, 1281–1296 (2017). https://doi.org/10.1007/s11947-017-1899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1899-y

Keywords

Navigation