Skip to main content
Log in

Freeze-Dried Fennel Oleoresin Products Formed by Biopolymers: Storage Stability and Characterization

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this work, fennel oleoresin (FO) was encapsulated through freeze drying of the so produced emulsions within different edible biopolymeric carriers. Specifically, modified starch, maltodextrin, chitosan, and gum arabic were used as carriers both individually and in blends (binary and ternary ones). The freeze-dried FO products were characterized in terms of structure (X-ray diffraction (XRD) analysis), whereas their stability was studied by means of sorption isotherm analysis under various a w. Moreover, the formation of complexes was evaluated through Fourier transform infrared spectroscopy (FTIR) technique and ζ-potential analysis. The verification of the encapsulation process was also conducted by applying FTIR technique. Results showed that the final products presented an amorphous character, whereas the sorption isotherms could be described adequately by the Guggenheim-Anderson-de Boer (GAB) model. FTIR technique proved to be effective to confirm both the formation of complexes and the presence of FO into the studied carriers, verifying thus the success of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AOAC (2000) Official method of analytical chemists (17th ed.). Arlington, TX: The Association of Official Analytical chemists Inc.

  • Alves, S. F., Borges, L. L., dos Santos, T. O., de Paula, J. R., Conceição, E. C., & Bara, M. T. F. (2014). Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum Arabic and maltodextrin as wall materials: composition and stability. Drying Technology, 32, 96–105.

    Article  CAS  Google Scholar 

  • Barras, A., Mezzetti, A., Richard, A., Lazzaroni, S., Roux, S., Melnyk, P., et al. (2009). Formulation and characterization of polyphenol-loaded lipid nanocapsules. International Journal of Pharmaceutics, 379(2), 270–277.

    Article  CAS  Google Scholar 

  • Beirão-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Isabel, M., Januário, N., et al. (2013). Inulin potential for encapsulation and controlled delivery of oregano essential oil. Food Hydrocolloids, 33, 199–206.

    Article  Google Scholar 

  • Borrmanna, D., Pierucci, A. P. T. R., Leite, S. G. F., & da Rocha Leao, M. H. M. (2013). Microencapsulation of passion fruit (Passiflora) juice with n-octenylsuccinate-derivatised starch using spray-drying. Food and Bioproducts Processing, 91, 23–27.

    Article  Google Scholar 

  • Butstraena, C., & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate Polymers, 99, 608–616.

    Article  Google Scholar 

  • Calvo, P., Hernandez, T., Lozano, M., & Gonzalez-Gomez, D. (2010). Microencapsulation of extra virgin olive oil by spray-drying: influence of wall material and olive quality. European Journal of Lipid Science and Technology, 112, 852–858.

    Article  CAS  Google Scholar 

  • Chranioti, C., & Tzia, C. (2013). Binary mixtures of modified starch, maltodextrin and chitosan as efficient encapsulating agents of fennel oleoresin. Food and Bioprocess Technology, 6, 3238–3246.

    Article  CAS  Google Scholar 

  • Chranioti, C., & Tzia, C. (2014a). Arabic gum mixtures as encapsulating agents of freeze-dried fennel oleoresin products. Food and Bioprocess Technology, 7, 1057–1065.

    Article  CAS  Google Scholar 

  • Chranioti, C., & Tzia, C. (2014b). Thermooxidative stability of fennel oleoresin microencapsulated in blended biopolymer agents. Journal of Food Science, 79(6), C1091–C1099.

  • Chranioti, C., Nikoloudaki, A., & Tzia, C. (2015). Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: incorporation in a chewing gum system. Carbohydrate Polymers, 127, 252–263.

    Article  CAS  Google Scholar 

  • Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1990). Introduction to infrared and Raman spectroscopy (3rd ed.p. p. 319). San Diego, CA.: Academic Press, Inc..

    Google Scholar 

  • de Oliveira, E. F., Paula, H. C. B., & de Paula, R. C. M. (2014). Alginate/cashew gum nanoparticles for essential oil encapsulation. Surfaces B: Biointerfaces, 113, 146–151.

    Article  Google Scholar 

  • Dong, Y., Ruan, Y., Wang, H., Zhao, Y., & Bi, D. (2004). Studies on glass transition temperature of chitosan with four techniques. Journal of Applied Polymer Science, 93(4), 1553–1558.

    Article  CAS  Google Scholar 

  • Espinosa-Andrews, H., Baéz-González, J. G., Cruz-Sosa, F., & Vernon-Carter, E. J. (2007). Gum Arabic-chitosan complex coacervation. Biomacromolecules, 8, 1313–1318.

    Article  CAS  Google Scholar 

  • Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier transform infrared spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541–546.

    Article  CAS  Google Scholar 

  • Fernandes, R. V. B., Borges, S. V., Botrel, D. A., Silva, E. K., Gomes da Costa, J. M., & Queiroz, F. (2013). Microencapsulation of rosemary essential oil: characterization of particles. Drying Technology, 31, 1245–1254.

    Article  Google Scholar 

  • Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A, 81, 89–102.

    Article  Google Scholar 

  • Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95, 50–56.

    Article  CAS  Google Scholar 

  • Kaasgaard, T., & Keller, D. (2010). Chitosan coating improves retention and redispersibility of freeze-dried flavour oil emulsions. Journal of Agricultural and Food Chemistry, 58, 2446–2454.

    Article  CAS  Google Scholar 

  • Kasaai, M. R. (2008). A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 71, 497–508.

    Article  CAS  Google Scholar 

  • Kaushik, V., & Roos, Y. H. (2007). Limonene encapsulation in freeze drying of gum Arabic–sucrose–gelatin systems. LWT- Food Science and Technology, 40, 1381–1391.

    Article  CAS  Google Scholar 

  • Kurek, M., Brachais, C. H., Nguimjeu, C. M., Bonnnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97, 1232–1240.

    Article  CAS  Google Scholar 

  • Labuza, T. P. (1984). Moisture sorption. In Practical aspects of isotherm measurement and use. Minneapolis. MN: The American Association of Cereal Chemists.

  • Lago, M. A., Sendón, R., Rodríguez-Bernaldo de Quirós, A., Sanches-Silva, A., Costa, H. S., Sánchez-Machado, D. I., et al. (2014). Preparation and characterization of antimicrobial films based on chitosan for active food packaging applications. Food and Bioprocess Technology, 7, 2932–2941. doi:10.1007/s11947-014-1276-z.

    Article  CAS  Google Scholar 

  • Lee, S. W., Kang, S. Y., Han, S. H., & Rhee, C. (2009). Influence of modification method and starch concentration on the stability and physical properties of modified potato starch as wall materials. European Food Research and Technology, 228, 449–455.

    Article  CAS  Google Scholar 

  • Lewicki, P. P. (1997). The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science and Technology, 32(6), 553–557.

    Article  CAS  Google Scholar 

  • Lim, H. K., Tan, C. P., Bakar, J., & Ng, S. P. (2011). Effects of different wall materials on the physicochemical properties and oxidative stability of spray-dried microencapsulated red-fleshed pitaya (Hylocereus polyrhizus) seed oil. Food and Bioprocess Technology, 5(4), 1220–1227.

    Article  Google Scholar 

  • Lu, S., Song, X., Cao, D., Chen, Y., & Yao, K. (2004). Preparation of water-soluble chitosan. Journal of Applied Polymer Science, 91(6), 3497–3503.

    Article  CAS  Google Scholar 

  • Ludwiczak, S., & Mucha, M. (2010). Modeling of water sorption isotherms of chitosan blends. Carbohydrate Polymers, 79, 34–39.

    Article  CAS  Google Scholar 

  • Moschakis, T., Murray, B. S., & Biliaderis, C. G. (2010). Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food Hydrocolloids, 24, 8–17.

    Article  CAS  Google Scholar 

  • Murugesan, R., & Orsat, V. (2012). Spray drying for the production of nutraceutical ingredients: a review. Food and Bioprocess Technology, 5, 3–14.

    Article  Google Scholar 

  • Paula, H. C. B., Sombra, F. M., Cavalcante, R. F., Abreu, F. O. M. S., & de Paula, R. C. M. (2011). Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering: C, 31(2), 173–178.

    Article  CAS  Google Scholar 

  • Peres, I., Rocha, S., Gomes, J., Morais, S., Pereira, M. C., & Coelho, M. (2011). Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydrate Polymers, 86, 147–153.

    Article  CAS  Google Scholar 

  • Pérez-Alonso, C., Beristain, C. I., Lobato-Calleros, C., Rodríguez-Huezo, M. E., & Vernon-Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, 77(4), 753–760.

    Article  Google Scholar 

  • Pérez-Masiá, R., Lagaron, J. M., & Lopez-Rubio, A. (2015). Morphology and stability of edible lycopene-containing micro and nanocapsules produced through electrospraying and spray drying. Food and Bioprocess Technology, 8, 459–470. doi:10.1007/s11947-014-1422-7.

    Article  Google Scholar 

  • Rocha-Selmi, G. A., Bozza, F. T., Thomazini, M., Bolini, H. M. A., & Fávaro-Trindade, C. S. (2013). Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry, 139(1–4), 72–78.

    Article  CAS  Google Scholar 

  • Rutz, J. K., Zambiazi, R. C., Borges, C. D., Krumreicha, F. D., da Luzb, S. R., Hartwig, N., et al. (2012). Microencapsulation of purple Brazilian cherry juice in xanthan, taragums and xanthan-tara hydrogel matrixes. Journal of Food Engineering, 108, 541–548.

    Article  Google Scholar 

  • Sanchez-Saenz, E. O., Perez-Alonso, C., Cruz-Olivares, J., Roman-Guerrero, A., Baez-Gonzalez, J. G., & Rodrıguez-Huezo, M. E. (2011). Establishing the most suitable storage conditions for microencapsulated allspice essential oil entrapped in blended biopolymers matrices. Drying Technology, 29, 863–872.

    Article  CAS  Google Scholar 

  • Shaikh, J., Bhosale, R., & Singhal, R. (2006). Microencapsulation of black pepper oleoresin. Food Chemistry, 94, 105–110.

    Article  CAS  Google Scholar 

  • Shigemasa, Y., Matsuura, H., Sashiwa, H., & Saimoto, H. (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18, 237–242.

    Article  CAS  Google Scholar 

  • Shimada, Y., Roos, Y., & Karel, M. (1991). Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. Journal of Agricultural and Food Chemistry, 39(4), 637–641.

    Article  CAS  Google Scholar 

  • Sormoli, M. E., Islam, M. I., & Langrish, T. A. G. (2012). The effect of chitosan hydrogen bonding on lactose crystallinity during spray drying. Journal of Food Engineering, 108, 541–548.

    Article  Google Scholar 

  • Tatar, F., Cengiz, A., & Kahyaoglu, T. (2014). Effect of hemicellulose as a coating material on water sorption thermodynamics of the microencapsulated fish oil and artificial neural network (ANN) modeling of isotherms. Food and Bioprocess Technology, 7, 2793–2802. doi:10.1007/s11947-014-1291-0.

    Article  CAS  Google Scholar 

  • Tobitsuka, K., Miura, M., & Kobayashi, S. (2006). Retention of a European pear aroma model mixture using different types of saccharides. Journal of Agricultural and Food Chemistry, 54, 5069–5076.

    Article  CAS  Google Scholar 

  • Van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems. In L. B. Rockland & G. F. Stewart (Eds.), Water activity: influences on food quality (pp. 147–177). New York: Academic.

    Google Scholar 

  • Wang, W., & Zhou, W. (2013). Water adsorption and glass transition of spray-dried soy sauce powders using maltodextrins as carrier. Food and Bioprocess Technology, 6, 2791–2799. doi:10.1007/s11947-012-0992-5.

    Article  CAS  Google Scholar 

  • Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96, 578–585.

    Article  CAS  Google Scholar 

  • Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan-starch composite film: preparation and characterization. Industrial Crops and Products, 21, 185–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Charikleia Chranioti is grateful to the State Scholarships Foundation of Greece (IKY) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantina Tzia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chranioti, C., Karamberi, A., Tsakanika, LA. et al. Freeze-Dried Fennel Oleoresin Products Formed by Biopolymers: Storage Stability and Characterization. Food Bioprocess Technol 9, 2002–2011 (2016). https://doi.org/10.1007/s11947-016-1773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1773-3

Keywords

Navigation