Skip to main content
Log in

Effects of Different Wall Materials on the Physicochemical Properties and Oxidative Stability of Spray-Dried Microencapsulated Red-Fleshed Pitaya (Hylocereus polyrhizus) Seed Oil

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this research was to investigate the influence of the composition of the wall material on the encapsulation and stability of microencapsulated red-fleshed pitaya seed oil. Hylocereus polyrhizus seed oil was homogenized with various wall material solutions at a core/wall material ratio of 0.33 and was microencapsulated by spray-drying. The microstructure and morphology of pitaya seed oil powder (PSOP) were observed using a scanning electron microscope (SEM). PSOP encapsulated with gum Arabic exhibited a lower degree of microencapsulation efficiency (MEE; 77.61–85.3%) compared to PSOP encapsulated with proteinaceous bases (90.12–98.06%). The study on oil retention revealed that sodium caseinate > whey protein > gum Arabic as effective wall materials for pitaya seed oil encapsulation. The effects of different wall systems on the oxidation stability of PSOP were studied under accelerated storage conditions; the peroxide value (POV) was determined throughout the test interval at several storage times. This study indicates that the use of lactose as wall material is able to increase the oxidation stability of PSOP; however, further research is needed to evaluate its antioxidative retention toward the oxidative stability of PSOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn, J. H., Kim, Y. P., Lee, Y. M., Seo, E. M., Lee, K. M., & Kim, H. S. (2008). Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107, 98–105.

    Article  CAS  Google Scholar 

  • Anker, M. H. & Reineccius, G. A. (1988). Encapsulated orange oil: Influence of spray-dryer air temperatures on retention and shelf life. In: S.J. Risch and G.A. Reineccius, Editors, Flavor encapsulation, ACS Symp. Ser. No. vol. 370, 78–85

  • AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists. (1973). Association of Official Analytical Chemists, Arlington

  • AOCS, Official Methods and Recommended Practices of the American Oil Chemists’ Society. (1993). 4th edn., edited by D. Firestone, AOCS Press, Champaign, IL.

  • Barbeau, G. C. (1990). La pitahaya rouge, un nouveau fruit exotique (The red pitahaya, a new exotic fruit). Fruits, 45, 141–147.

    Google Scholar 

  • Bhandari, B. R., Dumoulin, E. D., Richard, H. M. J., Noleau, I., & Lebert, A. M. (1992). Flavor encapsulation by spray drying: application to citral and linalyl acetate. Journal of Food Science, 57, 217–221.

    Article  CAS  Google Scholar 

  • Cerdeira, M., Palazolo, G. G., Candal, R. J., & Herrera, M. L. (2007). Factors affecting initial retention of a microencapsulated sunflower seed oil/milk fat fraction blend. Journal of the American Oil Chemists' Society, 84, 523–531.

    Article  CAS  Google Scholar 

  • Chang, Y. I., Scire, J. & Jacobs, B. (1988). Effect of particle and microstructure properties on encapsulated orange oil. In: S.J. Risch and G.A. Reineccius, Editors, Flavor encapsulation, ACS Symp. Ser. No. vol. 370, pp. 87–102

  • Cheah, L. S., & Zulkarnain, W. M. (2008). National pitaya acreage (2002–2006). In: Status of pitaya cultivation in Malaysia. Malaysia: Department of Agriculture

  • Collares, F. P., Finzer, J. R. D., & Kieckbusch, T. G. (2004). Glass transition control of the detachment of food pastes dried over glass plates. Journal of Food Engineering, 61, 261–267.

    Article  Google Scholar 

  • Drusch, S. (2007). Sugar beet pectin: a novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocolloids, 21(7), 1223–1228.

    Article  CAS  Google Scholar 

  • Dzondo-Gadet, M., Nzikou, J. M., Etoumongob, A., Linder, M., & Desobry, S. (2005). Encapsulation and storage of safou pulp oil in 6DE maltodextrins. Process Biochemistry, 40, 265–271.

    Article  CAS  Google Scholar 

  • Faldt, P., & Bergenstahl, B. (1995). Fat encapsulation in spray-dried food powders. Journal of the American Oil Chemists’ Society, 72(2), 171–176.

    Article  Google Scholar 

  • Fang, X., Shima, M., & Adachi, S. (2005). Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum Arabic by spray-drying. Food Science and Technology Research, 11, 380–384.

    Article  CAS  Google Scholar 

  • Frankel, E. N. (1993). In search for better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends in Food Science and Technology, 4, 220–225.

    Article  CAS  Google Scholar 

  • Frankel, E. N. (1998). Lipid oxidation. Ayr, UK: Oily Press.

    Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40, 1107–1121.

    Article  CAS  Google Scholar 

  • Gordon, M. H. (1991). Oils and fats: taints or flavor. Chemistry in Britain (November), 1020–1022.

  • Gordon, M. H., & Mursi, E. (1994). A comparison of oil stability based on Metrohm Rancimat with storage 20°C. Journal of the American Oil Chemists' Society, 71, 649–651.

    Article  CAS  Google Scholar 

  • Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49, 1934–1938.

    Article  CAS  Google Scholar 

  • Jaya, S., & Das, H. (2009). Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food and Bioprocess Technology, 2, 89–95.

    Article  CAS  Google Scholar 

  • Jing, H., Yap, M., Wong, P. Y. Y., & Kitts, D. D. (2009). Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin Maillard reaction products. Food and Bioprocess Technology. doi:10.1007/s11947-009-0279-7.

    Google Scholar 

  • Keogh, M. K., & O’Kennedy, B. T. (1999). Milk fat microencapsulation using whey proteins. International Dairy Journal, 9, 657–663.

    Article  CAS  Google Scholar 

  • Kneifel, W., & Seiler, A. (1993). Water-holding properties of milk protein products—a review. Food Structure, 12, 297–308.

    CAS  Google Scholar 

  • Lim, H. K., Tan, C. P., Karim, R., Ariffin, A. A., & Bakar, J. (2010). Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chemistry, 119, 1326–1331.

    Article  CAS  Google Scholar 

  • Mancebo-Campos, V., Salvador, M. D., & Fregapane, G. (2007). Comparative study of virgin olive oil behavior under Rancimat accelerated oxidation conditions and long-term room temperature storage. Journal of Agricultural and Food Chemistry, 55, 8231–8236.

    Article  CAS  Google Scholar 

  • McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (1998). Emulsification and microencapsulation properties of gum Arabic. Journal of Agriculture and Food Chemistry, 46, 4551–4555.

    Article  CAS  Google Scholar 

  • Moreau, D., & Rosenberg, M. (1993). Microstructure and fat extractability in microcapsules based on whey proteins or mixtures of whey proteins and lactose. Food Structure, 12, 457.

    CAS  Google Scholar 

  • Nelson, K.A., & Labuza, T.P. (1992). Relationship between water and lipid oxidation rates. In “Lipid Oxidation in Food (ACS Symposium Series 500)”, ed. St. Angelo, A.J., American Chemical Society, Washington DC, Ch. 6, pp. 93–103.

  • Pauletti, M. S., & Amestoy, P. (1999). Butter microencapsulation as affected by composition of wall material and fat. Journal of Food Science, 64, 279–282.

    Article  CAS  Google Scholar 

  • Pont, E. G. (1955). A de-emulsification technique for use in the peroxide test on the fat of milk, cream, concentrated and dried milks. Australian Journal of Dairy Technology, 10, 72–75.

    CAS  Google Scholar 

  • Serfert, Y., Drusch, S., & Schwarz, K. (2009). Chemical stabilisation of oils rich in long-chain polyunsaturated fatty acids during homogenisation, microencapsulation and storage. Food Chemistry, 113, 1106–1112.

    Article  CAS  Google Scholar 

  • Sliwinski, E. L., Lavrijsen, B. W. M., Vollenbroek, J. M., van der Stege, H. J., Van Boekel, M. A. J. S., & Wouters, J. T. M. (2003). Effects of spray drying on physicochemical properties of milk protein stabilised emulsions. Colloid and Surface B, 31, 219–229.

    Article  CAS  Google Scholar 

  • Vega, C., & Roos, Y. H. (2006). Invited review: spray-dried dairy and dairy-like emulsions—compositional considerations. Journal of Dairy Science, 89, 383–401.

    Article  CAS  Google Scholar 

  • Velasco, J., Dobarganes, M. C., & Márquez-Ruiz, G. (2000). Application of the accelerated test Rancimat to evaluate oxidative stability of dried microencapsulated oils. Grasas y Aceites, 51, 261–267.

    CAS  Google Scholar 

  • Velasco, J., Dobarganes, M. C., & Márquez-Ruiz, G. (2003). Variables affecting lipid oxidation in dried microencapsulated oils. Grasas y Aceites, 54, 304–314.

    Article  CAS  Google Scholar 

  • Velasco, J., Marmesat, S., Dobarganes, C., & Márquez-Ruiz, G. (2006). Heterogeneous aspects of lipid oxidation in dried microencapsulated oils. Journal of Agricultural and Food Chemistry, 54, 1722–1729.

    Article  CAS  Google Scholar 

  • Velasco, J., Dobarganes, C., Holgado, F., & Márquez-Ruiz, G. (2009). A follow-up oxidation study in dried microencapsulated oils under the accelerated conditions of Rancimat test. Food Research International, 42, 56–62.

    Article  CAS  Google Scholar 

  • Wanasundara, U. N., & Shahidi, F. (1998). Stabilization of marine oils with flavonoids. Journal of Food Lipids, 5, 183–196.

    Article  CAS  Google Scholar 

  • Wu, L. C., Hsu, H. W., Chen, Y. C., Chiu, C. C., Lin, Y. I., & Ho, J. A. (2006). Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 95, 319–327.

    Article  CAS  Google Scholar 

  • Wybraniec, S., & Mizrahi, Y. (2002). Fruit flesh betacyanin pigments in Hylocereus cacti. Journal of Agricultural and Food Chemistry, 50, 6086–6089.

    Article  CAS  Google Scholar 

  • Young, S. L., Sarda, X., & Rosenberg, M. (1993a). Microencapsulating properties of whey proteins. 1. Microencapsulation of anhydrous milk fat. Journal of Dairy Science, 76, 2868–2877.

    Article  CAS  Google Scholar 

  • Young, S. L., Sarda, X., & Rosenberg, M. (1993b). Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates. Journal of Dairy Science, 76, 2878–2885.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Universiti Putra Malaysia (RUGS Project No. 90009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Ping Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, HK., Tan, CP., Bakar, J. et al. Effects of Different Wall Materials on the Physicochemical Properties and Oxidative Stability of Spray-Dried Microencapsulated Red-Fleshed Pitaya (Hylocereus polyrhizus) Seed Oil. Food Bioprocess Technol 5, 1220–1227 (2012). https://doi.org/10.1007/s11947-011-0555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0555-1

Keywords

Navigation