Skip to main content

Advertisement

Log in

Development and Characterization of an Active Chitosan-Based Film Containing Quercetin

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work aims at developing an active chitosan film through the incorporation of quercetin and the evaluation of physical and functional properties of the films made thereof. The addition of quercetin showed to influence films’ properties in terms of surface morphology, tensile strength, and opacity while elongation-at-break, thickness, water vapor, and oxygen permeability were not significantly affected with incorporation of quercetin. The color parameters of chitosan films were affected by quercetin incorporation with a decrease of the values of L* and a*. The film exhibited a high free-radical scavenging activity, showing antioxidant activity. The film-forming solutions of chitosan with or without quercetin showed antibacterial activity against four Gram-negative and three Gram-positive bacteria. These results showed that quercetin incorporation in chitosan-based films has potential to be used as a solution for active food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: review. LWT - Food Science and Technology, 43, 837–842.

    Article  CAS  Google Scholar 

  • ASTM D 3985–02. (2002). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. In Annual book of ASTM. Philadelphia, PA: Amer. Soc. for Testing & Materials.

    Google Scholar 

  • Azuma, K., Ippoushi, K., & Terao, J. (2010). Evaluation of tolerable levels of dietary quercetin for exerting its antioxidative effect in high cholesterol-fed rats. Food and Chemical Toxicology, 48, 1117–1122.

    Article  CAS  Google Scholar 

  • Badawy, M.E.I., & Rabea, E.I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 29p.

  • Bozic, M., Gorgieva, S., & Kokol, V. (2012). Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydrate Polymers, 89, 854–864.

    Article  CAS  Google Scholar 

  • Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95, 379–385.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Lima, A. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94, 372–378.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Sousa-Gallagher, M. J., Macedo, I., Rodriguez-Aguilera, R., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2010). Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of “regional” cheese. Journal of Food Engineering, 97(1), 87–94.

    Article  CAS  Google Scholar 

  • Chen, C. H., & Lai, L. S. (2008). Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids, 22, 1584–1595.

    Article  CAS  Google Scholar 

  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356.

    Article  CAS  Google Scholar 

  • Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21, 703–714.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.

    Article  CAS  Google Scholar 

  • Fahlman, B. M., & Krol, E. S. (2009). UVA and UVB radiation-induced oxidation products of quercetin. Journal of Photochemistry and Photobiology B: Biology, 97, 123–131.

    Article  CAS  Google Scholar 

  • Gatto, M. T., Falcocchio, S., Grippa, E., Mazzanti, G., Battinelli, L., Nicolasi, G., Lambusta, D., & Saso, L. (2002). Antimicrobial and antilipase activity of quercetin and its C2-C16 3-O-acyl-esters. Bioorganic & Medicinal Chemistry, 10, 269–272.

    Article  CAS  Google Scholar 

  • Gramza, A., & Korczak, J. (2005). Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems. Trends in Food Science & Technology, 16, 351–358.

    Article  CAS  Google Scholar 

  • Guirguis, O. W., Elkader, M. F. H. A., & Nasrat, A. A. (2013). Enhancing antimicrobial activity for chitosan by adding Jojoba liquid wax. Materials Letters, 93, 353–355.

    Article  CAS  Google Scholar 

  • Leceta, I., Guerrero, P., & Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93, 339–346.

    Article  CAS  Google Scholar 

  • Lima, A. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits—influence on fruits gas transfer rate. Journal of Food Engineering, 97(1), 101–109.

    Article  CAS  Google Scholar 

  • Martins J. T., Cerqueira M. A., Souza B. W. S., Avides M. C., & Vicente A. A. (2010). Shelf-life extension of Ricotta cheese using coatings of galactomannans from non-conventional sources incorporating nisin against Listeria monocytogenes. Journal of Agricultural and Food Chemistry, 58, 1884–1891.

  • Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 27, 220–227.

    Article  CAS  Google Scholar 

  • Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chemistry, 130, 1036–1043.

    Article  CAS  Google Scholar 

  • Mohamed, C., Clementine, K. A., Didier, M., Gérard, L., & Noëlle, D. C. M. (2013). Antimicrobial and physical properties of edible chitosan films enhanced by lactoperoxidase system. Food Hydrocolloids, 30, 576–580.

    Article  CAS  Google Scholar 

  • Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT - Food Science and Technology, 46, 477–484.

    Article  CAS  Google Scholar 

  • Norajit, K., Kim, K. M., & Ryu, G. H. (2010). Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. Journal of Food Engineering, 98, 377–384.

    Article  CAS  Google Scholar 

  • Patel, A. R., Heussen, P. C. M., Hazekamp, J., Drost, E., & Velikov, K. P. (2012). Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chemistry, 133, 423–429.

    Article  CAS  Google Scholar 

  • Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., & Martucci, J. F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25, 1372–1381.

    Article  CAS  Google Scholar 

  • Pereda, M., Amica, G., & Marcovich, N. E. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87, 1318–1325.

    Article  CAS  Google Scholar 

  • Pinotti, A., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2007). Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloids, 21(1), 66–72.

    Article  CAS  Google Scholar 

  • Portes, E., Gardrat, C., Castellan, A., & Coma, V. (2009). Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydrate Polymers, 76, 578–584.

    Article  CAS  Google Scholar 

  • Rubilar, J. F., Cruz, R. M. S., Silva, H. D., Vicente, A. A., Khmelinskii, I., & Vieira, M. C. (2013). Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. Journal of Food Engineering, 115, 466–474.

    Article  CAS  Google Scholar 

  • Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J. A., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control, 30, 386–392.

    Article  CAS  Google Scholar 

  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24, 770–775.

    Article  CAS  Google Scholar 

  • Srinivas, K., King, J. W., Howard, L. R., & Monrad, J. K. (2010). Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. Journal of Food Engineering, 100, 208–218.

    Article  CAS  Google Scholar 

  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32, 35–41.

    Article  Google Scholar 

  • Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32, 42–51.

    Article  Google Scholar 

  • Yu, S. H., Hsieh, H. Y., Pang, J. C., Tang, D. W., Shih, C. M., Tsai, M. L., Tsai, Y. C., & Mi, F. L. (2013). Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids, 32, 9–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author Marthyna Pessoa de Souza thanks the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES/PDEE-Brazil) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) for fellowships. Miguel A. Cerqueira and Hélder D. Silva (SFRH/BPD/72753/2010 and SFRH/BD/81288/2011, respectively) are recipients of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). This research was financially supported by research grants and fellowships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), as well as the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE). The authors also thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), and the project “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,” REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel A. Cerqueira or Maria G. Carneiro-da-Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, M.P., Vaz, A.F.M., Silva, H.D. et al. Development and Characterization of an Active Chitosan-Based Film Containing Quercetin. Food Bioprocess Technol 8, 2183–2191 (2015). https://doi.org/10.1007/s11947-015-1580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1580-2

Keywords

Navigation