Skip to main content

Advertisement

Log in

Physicochemical and Bioactive Properties of Soluble Dietary Fibers from Blasting Extrusion Processing (BEP)-Extruded Carrot Residues

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A 50 % increase in the content of water-soluble dietary fibers from carrot residues (CRSDF) was obtained by a novel blasting extrusion processing (BEP) with improved water holding capacity and oil retention capacity. A neutral polysaccharide (CRSDF-2) was successfully separated by a DEAE-52-cellulose column chromatography system. The results of high-performance liquid chromatography (HPLC) and gas chromatography (GC) showed that CRSDF-2 contained four sorts of monosaccharides: arabinose, xylose, glucose, and galactose with a molar ratio of 0.58:1.50:1.0:2.02. The average molecular weight of CRSDF-2 was estimated to be approximately 5.98 × 104 Da. Moreover, it was illustrated that CRSDF displayed a high cation-exchange capacity and a high adsorption capacity for Pb cation. Furthermore, CRSDF was capable of binding sodium deoxycholate sodium cholate, sodium deoxycholate, and sodium taurocholate. CRSDF could be potentially used as a promising ingredient in functional food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Hamid, A., & Luan, Y. S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15–19.

    Article  CAS  Google Scholar 

  • Afify, A. E.-M. M., Romeilah, R. R., Osfor, M. M., & Elbahnasawy, A. S. (2013). Evaluation of carrot pomace (Daucus carota L.) as hypocholesterolemic and hypolipidemic agent on albino rats. Notulae Scientia Biologicae, 5(1), 7–14.

    Google Scholar 

  • Brownlee, I. A. (2011). The physiological roles of dietary fibre. Food Hydrocolloids, 25(2), 238–250.

    Article  CAS  Google Scholar 

  • Burton-Freeman, B. (2000). Dietary fiber and energy regulation. The Journal of Nutrition, 130(2), 272S–275S.

    CAS  Google Scholar 

  • Chau, C.-F., & Chen, C.-H. (2006). Effects of two pomace insoluble fibres on the activities of faecal bacterial enzymes and intestinal health. European Food Research and Technology, 222(5–6), 681–685.

    Article  CAS  Google Scholar 

  • Chau, C.-F., Chen, C.-H., & Lee, M.-H. (2004). Comparison of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fiber-rich fractions. LWT- Food Science and Technology, 37(2), 155–160.

    Article  CAS  Google Scholar 

  • Chau, C.-F., Wang, Y.-T., & Wen, Y.-L. (2007). Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chemistry, 100(4), 1402–1408.

    Article  CAS  Google Scholar 

  • Chen, H., Zhang, M., Qu, Z., & Xie, B. (2008). Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis). Food Chemistry, 106(2), 559–563.

    Article  CAS  Google Scholar 

  • Chen, J., Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Foodservice Research International, 54(2), 1821–1827.

    Article  CAS  Google Scholar 

  • Chen, Y., Ye, R., & Liu, J. (2014a). Effects of different concentrations of ethanol and isopropanol on physicochemical properties of zein-based films. Industrial Crops and Products, 53, 140–147.

    Article  Google Scholar 

  • Chen, Y., Ye, R., Yin, L., & Zhang, N. (2014b). Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. Journal of Food Engineering, 120, 1–8.

    Article  Google Scholar 

  • Chen, Y., Ye, R., & Wang, Y. (2015). Acid-soluble and pepsin-soluble collagens from grass carp (ctenopharyngodon idella) skin: a comparative study on physicochemical properties. International Journal of Food Science and Technology, 50(1), 186–193.

    Article  CAS  Google Scholar 

  • Cheng, Z., Wu, C., Yang, W., & Xu, T. (2010). Preparation of bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) hollow fiber cation-exchange membranes and immobilization of cellulase thereon. Journal of Membrane Science, 358(1), 93–100.

    Article  CAS  Google Scholar 

  • Cui, S. W., Phillips, G. O., Blackwell, B., & Nikiforuk, J. (2007). Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUM™): part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUM™ Arabic. Food Hydrocolloids, 21(3), 347–352.

    Article  CAS  Google Scholar 

  • Daşbaşı, T., Saçmacı, Ş., Ülgen, A., & Kartal, Ş. (2015). A solid phase extraction procedure for the determination of Cd (II) and Pb (II) ions in food and water samples by flame atomic absorption spectrometry. Food Chemistry, 174, 591–596.

    Article  Google Scholar 

  • Debruyne, P. R., Bruyneel, E. A., Li, X., Zimber, A., Gespach, C., & Mareel, M. M. (2001). The role of bile acids in carcinogenesis. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 480, 359–369.

    Article  Google Scholar 

  • Ebihara, K., & Schneeman, B. O. (1989). Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rats. The Journal of Nutrition, 119(8), 1100–1106.

    CAS  Google Scholar 

  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chemistry, 124(2), 411–421.

    Article  CAS  Google Scholar 

  • Faraj, A., Vasanthan, T., & Hoover, R. (2004). The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Foodservice Research International, 37(5), 517–525.

    Article  CAS  Google Scholar 

  • Feng, T., Su, Q., Zhuang, H., Ye, R., Gu, Z., & Jin, Z. (2014). Ghost structures, pasting, rheological and textural properties between mesona blumes gum and various starches. Journal of Food Quality, 37(2), 73–82.

    Article  CAS  Google Scholar 

  • Galanakis, C. M., Tornberg, E., & Gekas, V. (2010). Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT- Food Science and Technology, 43(7), 1018–1025.

    Article  CAS  Google Scholar 

  • Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J., & Thom, D. (1973). Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letters, 32(1), 195–198.

    Article  CAS  Google Scholar 

  • Hernández-Ortega M, Kissangou G, Necoechea-Mondragón H, Sánchez-Pardo ME & Ortiz-Moreno A (2013) Microwave Dried Carrot Pomace as a Source of Fiber and Carotenoids.

  • Hu, Y.-B., Wang, Z., & Xu, S.-Y. (2008). Corn bran dietary fibre modified by xylanase improves the mRNA expression of genes involved in lipids metabolism in rats. Food Chemistry, 109(3), 499–505.

    Article  CAS  Google Scholar 

  • Hu, G., Huang, S., Chen, H., & Wang, F. (2010). Binding of four heavy metals to hemicelluloses from rice bran. Foodservice Research International, 43(1), 203–206.

    Article  CAS  Google Scholar 

  • Huang, Z., Ye, R., Chen, J., & Xu, F. (2013). An improved method for rapid quantitative analysis of the insoluble dietary fiber in common cereals and some sorts of beans. Journal of Cereal Science, 57(3), 270–274.

    Article  CAS  Google Scholar 

  • Ingelsson, E., Schaefer, E. J., Contois, J. H., McNamara, J. R., Sullivan, L., Keyes, M. J., Pencina, M. J., Schoonmaker, C., Wilson, P. W., & D’Agostino, R. B. (2007). Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. Journal of the American Medical Association, 298(7), 776–785.

    Article  CAS  Google Scholar 

  • Jabbar, S., Abid, M., Wu, T., Hashim, M. M., Saeeduddin, M., Hu, B., Lei, S., & Zeng, X. (2015). Ultrasound-assisted extraction of bioactive compounds and antioxidants from carrot pomace: a response surface approach. Journal of Food Processing and Preservation.

  • Kahlon, T., Chiu, M., & Chapman, M. (2009). In vitro bile-acid-binding of whole vs. pearled wheat grain. Cereal Chemistry, 86(3), 329–332.

    Article  CAS  Google Scholar 

  • Kendall, C. W., Esfahani, A., & Jenkins, D. J. (2010). The link between dietary fibre and human health. Food Hydrocolloids, 24(1), 42–48.

    Article  CAS  Google Scholar 

  • Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F., & Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297–305.

    Article  CAS  Google Scholar 

  • Nawirska, A. (2005). Binding of heavy metals to pomace fibers. Food Chemistry, 90(3), 395–400.

    Article  CAS  Google Scholar 

  • Nawirska, A., & Kwaśniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry, 91(2), 221–225.

    Article  CAS  Google Scholar 

  • Ou, S., Gao, K., & Li, Y. (1999). An in vitro study of wheat bran binding capacity for Hg, Cd, and Pb. Journal of Agricultural and Food Chemistry, 47(11), 4714–4717.

    Article  CAS  Google Scholar 

  • Ozcan, M. M., Dursun, N., & Sağlam, C. (2011). Heavy metals bounding ability of pomegranate (Punica granatum) peel in model system. International Journal of Food Properties, 14(3), 550–556.

    Article  CAS  Google Scholar 

  • Sánchez-Castillo, C. P., Dewey, P. J., Ma, D. L. S., Finney, S., & James, W. P. T. (1995). The dietary fiber content (nonstarch polysaccharides) of Mexican fruits and vegetables. Journal of Food Composition and Analysis, 8(3), 284–294.

  • Sangnark, A., & Noomhorm, A. (2003a). Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chemistry, 80(2), 221–229.

    Article  CAS  Google Scholar 

  • Sangnark, A., & Noomhorm, A. (2003b). Effect of particle sizes on in-vitro calcium and magnesium binding capacity of prepared dietary fibers. Foodservice Research International, 36(1), 91–96.

    Article  CAS  Google Scholar 

  • Sharma, K. D., Karki, S., Thakur, N. S., & Attri, S. (2012). Chemical composition, functional properties and processing of carrot—a review. Journal of Food Science and Technology, 49(1), 22–32.

    Article  CAS  Google Scholar 

  • Tharanathan, R., & Mahadevamma, S. (2003). Grain legumes—a boon to human nutrition. Trends in Food Science and Technology, 14(12), 507–518.

    Article  CAS  Google Scholar 

  • Upadhyay, A., Sharma, H., & Sarkar, B. (2010). Optimization of carrot pomace powder incorporation on extruded product quality by response surface methodology. Journal of Food Quality, 33(3), 350–369.

    Article  Google Scholar 

  • Vasanthan, T., Gaosong, J., Yeung, J., & Li, J. (2002). Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chemistry, 77(1), 35–40.

    Article  CAS  Google Scholar 

  • Villanueva-Suárez, M. J., Pérez-Cózar, M. L., & Redondo-Cuenca, A. (2013). Sequential extraction of polysaccharides from enzymatically hydrolyzed okara byproduct: physicochemical properties and in vitro fermentability. Food Chemistry, 141(2), 1114–1119.

    Article  Google Scholar 

  • Viuda-Martos, M., López-Marcos, M., Fernández-López, J., Sendra, E., López-Vargas, J., & Pérez-Álvarez, J. (2010). Role of fiber in cardiovascular diseases: a review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240–258.

    Article  CAS  Google Scholar 

  • Yan, X., Ye, R., & Chen, Y. (2015). Blasting extrusion processing: the increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chemistry, 180, 106–115.

    Article  CAS  Google Scholar 

  • Yoon, K. Y., Cha, M., Shin, S. R., & Kim, K. S. (2005). Enzymatic production of a soluble-fibre hydrolyzate from carrot pomace and its sugar composition. Food Chemistry, 92(1), 151–157.

    Article  CAS  Google Scholar 

  • Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was kindly supported by the Projects of Tianjin Science and Technology Support Program (Number: 13ZXNZNC08500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Ye or Ye Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Yan, X., Xu, X. et al. Physicochemical and Bioactive Properties of Soluble Dietary Fibers from Blasting Extrusion Processing (BEP)-Extruded Carrot Residues. Food Bioprocess Technol 8, 2036–2046 (2015). https://doi.org/10.1007/s11947-015-1557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1557-1

Keywords

Navigation