Skip to main content
Log in

Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic Response of White Wine Grapes

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Grapes were exposed to ozone gas in air (GO) or in nitrogen atmosphere (GNO) for 12 h at 10 °C and then kept in normal atmosphere for 1 day at room temperature. Grapes kept at 10 °C, for 12 h without ozone treatment plus 1 day at room temperature, were considered as the control sample (GC). Low temperature induced a great change of ripening features only in GC with reduction of weight, loss of sugars (about 20 %) and increase in titratable acidity but, above all, 15 % of increase in malondialdehyde (MDA). The use of ozone in air or in nitrogen neither altered the fruit quality attributes nor modified MDA concentration. Ozone provoked a high decrease of hydroxycinnamic acids, compared to the harvest grapes, overall in GNO samples (caftaric acid −38.8 %; coutaric acid −26.1 %). Cold storage treatment without ozone enhanced antiradical capacity. Three main flavonols, named hyperoside (quercetin-3-O-galactoside), rutin (quercetin-3-O-rutinoside), and kaempferol-3-O-glucoside were found in all grape extracts analyzed, and the total flavonol content increased significantly (p < 0.008) in all the samples starting from 1.79 mg/g dry matter of grapes at harvest (GH sample) up to 2.13 mg/g of GNO one. Both cold storage and ozone in air treatments significantly increased catechin content compared to that in the grapes at harvest (+54.6 and +35.7 % for GC and GO, respectively; p < 0.008). The interrelationships between the parameters analyzed and the different postharvest treatments, as well as the relationships among variables, were investigated by principal component analysis. Component loadings showed significant groupings for concentrations of hydroxycinnamic acid derivates and flavonols, which appeared as good candidates to be further considered as biomarkers of the physiological status of grapes. Similarly, the component scores grouped according to the different postharvest treatments, highlighting hyperoside as a useful indicator of the ozone effect on the grape’s physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artés-Hernández, F., Artés, F., & Tomás-Barberán, F. A. (2003). Quality and enhancement of bioactive phenolics in cv. Napoleon table grapes exposed to different postharvest gaseous treatments. Journal of Agricultural and Food Chemistry, 51(18), 5290–5295.

    Article  Google Scholar 

  • Artés-Hernández, F., Aguayo, E., Artés, F., & Tomás-Barberán, F. A. (2007). Enriched ozone atmosphere enhances bioactive phenolics in seedless table grapes after prolonged shelf life. Journal of the Science of Food and Agriculture, 87(5), 824–831.

    Article  Google Scholar 

  • Boselli, E., Di Lecce, G., Alberti, F., & Frega, N. G. (2010). Nitrogen gas affects the quality and the phenolic profile of must obtained from vacuum-pressed white grapes. LWT-Food Science and Technology, 43(10), 1494–1500.

    Article  CAS  Google Scholar 

  • Carbone, K., Giannini, B., Picchi, V., Lo Scalzo, R., & Cecchini, F. (2011). Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chemistry, 127(2), 493–500.

    Article  CAS  Google Scholar 

  • Cirilli, M., Bellincontro, A., De Santis, D., Botondi, R., Colao, M. C., Muleo, R., & Mencarelli, F. (2012). Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration. Food Chemistry, 132(1), 447–454.

    Article  CAS  Google Scholar 

  • Cohen, E., Shapiro, B., Shalom, Y., & Klein, J. D. (1994). Water loss: a nondestructive indicator of enhanced cell membrane permeability of chilling-injured citrus fruit. Journal of the American Society for Horticultural Science, 119(5), 983–986.

    Google Scholar 

  • Cohen, S. D., Tarara, J. M., Gambetta, G. A., Matthews, M. A., & Kennedy, J. A. (2012). Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. Journal of Experimental Botany, 63(7), 2655–2665.

    Article  CAS  Google Scholar 

  • De Sanctis, F. (2013). Metabolic and structural effects of dehydratation and ozone postharvest treatments on wine grape. Proceedings of 18th Workshop on the Development in the Italian PhD research on food science technology and biotechnology, Conegliano (Italy), 25–27 September.

  • Dong, J., Yu, Q., Lu, L., & Xu, M. (2012). Effect of yeast saccharide treatment on nitric oxide accumulation and chilling injury in cucumber fruit during cold storage. Postharvest Biology and Technology, 68, 1–7.

    Article  CAS  Google Scholar 

  • Du, Z., & Bramlage, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40(9), 1566–1570.

    Article  CAS  Google Scholar 

  • Feliziani, E., Romanazzi, G., & Smilanick, J. L. (2014). Application of low concentrations of ozone during the cold storage of table grapes. Postharvest Biology and Technology, 93, 38–48.

    Article  CAS  Google Scholar 

  • Fernández-Zurbano, P., Ferreira, V., Escudero, A., & Cacho, J. (1998). Role of hydroxycinnamic acids and flavanols in the oxidation and browning of white wines. Journal of Agricultural and Food Chemistry, 46(12), 4937–4944.

    Article  Google Scholar 

  • Field, A. (2009). Exploring Assumptions. In A. Field (Ed.), Discovering statistics using SPSS (153 pp). London: SAGE Publications.

    Google Scholar 

  • Forney, C. F. (2003). Postharvest response of horticultural products to ozone. In D. M. Hodges (Ed.), Postharvest Oxidative Stress in Horticultural Crops (pp. 13–43). New York: The Haworth Press Inc.

    Google Scholar 

  • Foy, C. D., Lee, E. H., Rowland, R., Devine, T. E., & Buzzell, R. I. (1995). Ozone tolerance related to flavonol glycoside genes in soybean. Journal of Plant Nutrition, 18(4), 637–647.

    Article  CAS  Google Scholar 

  • Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994). Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant, Cell & Environment, 17(5), 507–523.

    Article  CAS  Google Scholar 

  • Horvitz, S., & Cantalejo, M. J. (2014). Application of ozone for the postharvest treatment of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 54(3), 312–339.

    Article  CAS  Google Scholar 

  • Imahori, Y., Takemura, M., & Bai, J. (2008). Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biology and Technology, 49(1), 54–60.

    Article  CAS  Google Scholar 

  • Li, J., Yan, S., Wang, Q., Li, Y., & Wang, Q. (2014). Effects of ionized air treatments on postharvest physiology and quality of fresh cucumber. Journal of Food Processing and Preservation, 38(1), 271–277.

    Article  CAS  Google Scholar 

  • Lo Scalzo, R. (2008). Organic acids influence on DPPH scavenging by ascorbic acid. Food Chemistry, 107(1), 40–43.

    Article  CAS  Google Scholar 

  • Mehlhorn, H., Tabner, B. J., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79(2), 377–383.

    Article  CAS  Google Scholar 

  • Mencarelli, F., Ceccantoni, B., Bellincontro, A., Catelli, C., & Di Mambro, D. (2011) Dalla SO2 all’O3, VQ 4 (Luglio), 24–27.

  • Nenadis, N., Boyle, S., Bakalbassis, E. G., & Tsimidou, M. (2003). An experimental approach to structure-activity relationships of caffeic and dihydrocaffeic acids and related monophenols. Journal of the American Oil Chemists' Society, 80(5), 451–458.

    Article  CAS  Google Scholar 

  • Pell, E. J., & Dann, M. S. (1991). Multiple stress-induced foliar senescence and implications for whole-plant longevity. In H. A. Mooney, W. E. Winner, & E. J. Pell (Eds.), Response of plants to multiple stresses (pp. 189–204). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Piao, M. J., Kang, K. A., Zhang, R., Ko, D. O., Wang, Z. H., You, H. J., … & Hyun, J. W. (2008). Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(12), 1448–1457.

  • Piljac-Žegarac, J., & Šamec, D. (2011). Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Research International, 44(1), 345–350.

    Article  Google Scholar 

  • Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., … & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72(1), 35–42.

  • Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66(4), 401–436.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Lichter, A., Gabler, F. M., & Smilanick, J. L. (2012). Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 63(1), 141–147.

    Article  CAS  Google Scholar 

  • Rosales, R., Fernandez-Caballero, C., Romero, I., Escribano, M., Merodio, C., & Sanchez-Ballesta, M. (2013). Molecular analysis of the improvement in rachis quality by high CO2 levels in table grapes stored at low temperature. Postharvest Biology and Technology, 77, 50–58.

    Article  CAS  Google Scholar 

  • Salvador, A., Abad, I., Arnal, L., & Martínez Jávega, J. M. (2006). Effect of ozone on postharvest quality of persimmon. Journal of Food Science, 71(6), S443–S446.

    Article  CAS  Google Scholar 

  • Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292.

    Article  CAS  Google Scholar 

  • Sánchez Moreno, C., Larrauri, J. A., & Saura‐Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.

    Article  Google Scholar 

  • Sandermann, H., Jr., Ernst, D., Heller, W., & Langebartels, C. (1998). Ozone: an abiotic elicitor of plant defence reactions. Trends in Plant Science, 3(2), 47–50.

    Article  Google Scholar 

  • Schreiner, M., & Huyskens-Keil, S. (2006). Phytochemicals in fruit and vegetables: health promotion and postharvest elicitors. Critical Reviews in Plant Sciences, 25(3), 267–278.

    Article  CAS  Google Scholar 

  • Skog, C. L., & Chu, L. J. (2001). Effect of ozone on qualities of fruits and vegetables in cold storage. Canadian Journal of Plant Science, 81(4), 773–778.

    Article  CAS  Google Scholar 

  • Spayd, S. E., Tarara, J. M., Mee, D. L., & Ferguson, J. C. (2002). Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53(3), 171–182.

    CAS  Google Scholar 

  • Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274.

    Article  CAS  Google Scholar 

  • Toivonen, P. M. A. (2003). Effects of storage conditions and postharvest procedures on oxidative stress in fruits and vegetables. In D. M. Hodges (Ed.), Postharvest oxidative stress in horticultural crops (pp. 69–90). New York: The Haworth Press Inc.

    Google Scholar 

  • Torres, B., Tiwari, B. K., Patras, A., Wijngaard, H. H., Brunton, N., Cullen, P. J., & O’Donnell, C. P. (2011). Effect of ozone processing on the colour, rheological properties and phenolic content of apple juice. Food Chemistry, 124(3), 721–726.

    Article  CAS  Google Scholar 

  • Tzortzakis, N., Borland, A., Singleton, I., & Barnes, J. (2007). Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biology and Technology, 45(3), 317–325.

    Article  CAS  Google Scholar 

  • Van Den Berg, A. J. J., Halkes, S. B. A., Quarles van Ufford, H. C., Hoekstra, M. J., & Beukelman, C. J. (2003). A novel formulation of metal ions and citric acid reduces reactive oxygen species in vitro. Journal of Wound Care, 12(10), 413–418.

    Article  Google Scholar 

  • Wismer, W. V. (2003). Low temperature as a causative agent of oxidative stress in postharvest crops. In D. M. Hodges (Ed.), Postharvest Oxidative Stress in Horticultural Crops (pp. 55–65). New York: The Haworth Press Inc.

    Google Scholar 

  • Xing, H. Y., Liu, Y., Chen, J. H., Sun, F. J., Shi, H. Q., & Xia, P. Y. (2011). Hyperoside attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent Keap1–Nrf2–ARE signaling pathway. Biochemical and Biophysical Research Communications, 410(4), 759–765.

    Article  CAS  Google Scholar 

  • Yamashita, S., Sakane, T., Harada, M., Sugiura, N., Koda, H., Kiso, Y., & Sezaki, H. (2002). Absorption and metabolism of antioxidative polyphenolic compounds in red wine. Annals of the New York Academy of Sciences, 957(1), 325–328.

    Article  CAS  Google Scholar 

  • Yang, Y., & Rao, J. (2006). Effects of ozone on several physiological indexes of postharvest peach (Prunus persica, L. Shinvhong') under low temperature condition. Plant Physiology Communications, 42(6), 1055.

    Google Scholar 

  • Yuan, X., Wu, Z., Li, H., Wang, Y., Liu, F., Cai, H., Newlove, A. A., & Wang, Y. (2014). Biochemical and proteomic analysis of “Kyoto” grape (Vitis labruscana) berries during cold storage. Postharvest Biology and Technology, 88, 79–87.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, L., Yao, Y., Yan, J., & He, Z. (2012). Phenolic acid profiles of Chinese wheat cultivars. Journal of Cereal Science, 56(3), 629–635.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank PC Eng for providing ozone equipment and Roberto Forniti for technical assistance during the treatment.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Mencarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, K., Mencarelli, F. Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic Response of White Wine Grapes. Food Bioprocess Technol 8, 1739–1749 (2015). https://doi.org/10.1007/s11947-015-1515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1515-y

Keywords

Navigation