Skip to main content
Log in

Biodegradable Duo-functional Active Film: Antioxidant and Antimicrobial Actions for the Conservation of Beef

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The mechanical properties as well antioxidant/antimicrobial effects of active packaging for beef produced from cornstarch, linear low-density polyethylene (LLDPE), and citric acid (CA) were evaluated. The addition of starch in the blends influenced the mechanical characteristics of the films, with reduced ultimate tensile strength (TS), elongation at break (E), and modulus of elasticity (ME) parameters for films with a higher starch concentration. Conversely, greater solubility and degree of swelling of the films were observed when the starch content was increased, with gradual release of the CA from the packaging to the product. Characterization by thermogravimetric analysis and Fourier transform infrared spectroscopy showed that the incorporation of starch affected the thermal stability and chemical composition of the blends. The "in vitro" biodegradability was shown by gravimetric evaluation, with weight loss and decrease of TS of the films. Meat samples packed with the active films and stored under refrigeration showed a significant reduction of the levels of thiobarbituric acid reactive substances (TBARSs) and a decrease of about 1 log in the total bacterial count in the beef, compared with the control film (nonactive). The color was also affected, with an increase in the a* (redness) parameter, which characterizes the desirable red color in beef. The biodegradable packaging of starch/LLDPE incorporating CA prevented oxidative and microbial processes, besides providing a more desirable color to the meat during storage. In this study, we hypothesized that the effects were related to CA presence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal, P., & Dollimore, D. (1997). The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis. Thermochimica Acta, 291, 65–72.

    Article  CAS  Google Scholar 

  • Ahmadi, R., Kalbasi-Ashtari, A., Oromiehie, A., Yarmand, M. S., & Jahandideh, F. (2012). Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). Journal of Food Engineering, 109(4), 745–751.

    Article  CAS  Google Scholar 

  • American Society Standard Testing and Materials (ASTM) (1996a). Standard specification for standard atmosphere for conditioning and testing flexible barriers materials—E171-94. Philadelphia.

  • American Society Standard Testing and Materials (ASTM) (1996b). Standard practice for conditioning plastics and electrical insulating materials form testing—D618-95. Philadelphia.

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science and Emerging Technologies, 3, 113–126.

    Article  CAS  Google Scholar 

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. process Technology, 6(9), 2419–2428.

    CAS  Google Scholar 

  • Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110, 18–25.

    Article  CAS  Google Scholar 

  • Bodaghi, H., Mostofi, Y., Oromiehie, A., Zamani, Z., Ghanbarzadeh, B., Costa, C., et al. (2013). Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT – Food Science and Technology, 50(2), 702–706.

    Article  CAS  Google Scholar 

  • Bolumar, T., Andersen, M. L., & Orlien, V. (2011). Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chemistry, 129, 1406–1412.

    Article  CAS  Google Scholar 

  • Bonhomme, S., Cuer, A., Delort, A.-M., Lemaire, J., Sancelme, M., & Scott, G. (2003). Environmental biodegradation of polyethylene. Polymer Degradation and Stability, 81, 441–452.

    Article  CAS  Google Scholar 

  • Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2011). Biopolímeros, polímeros biodegradáveis e polímeros verdes. Revista Eletrônica de Materiais e Processos, 6, 127–139.

    Google Scholar 

  • Buckley, D. J., Morrissey, P. A., & Gray, J. I. (1995). Influence of dietary vitamin E on the oxidative stability and quality of pig meat. Journal of Animal Science, 73, 3122–3130.

    CAS  Google Scholar 

  • Carvalho, A. J. F., Curvelo, A. A. S., & Agnelli, J. A. M. (2001). A first insight on composites of thermoplastic starch and kaolin. Carbohydrate Polymers, 45, 189–194.

    Article  Google Scholar 

  • Cercléa, C., Sarazinb, P., & Favisa, B. D. (2013). High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydrate Polymers, 92, 138–148.

    Article  Google Scholar 

  • Chan, W. K. M., Hakkarainen, K., Faustman, C., Schaeffer, D. M., Scheller, K. K., & Liu, Q. (1995). Color stability and microbial growth relationships in beef as affected by endogenous α-tocopherol. Journal of Food Science, 60, 966–971.

    Article  CAS  Google Scholar 

  • Cornforth, D. P., & Jayasingh, P. (2004). Chemical and physical characteristics of meat: colour and pigment. Amsterdam: Elsevier. In Encyclopedia of meat sciences.

    Google Scholar 

  • Damodaran, S., Parkin, K. L., & Fennema, O. R. (2010). Química de alimentos de fennema (4th ed.). Porto Alegre: Artmed.

    Google Scholar 

  • Dias, F. S., Ávila, C. L. S., & Schwan, R. F. (2011). In situ inhibition of Escherichia coli isolated from fresh pork sausage by organic acids. Journal of Food Science, 76(9), 605–610.

    Article  Google Scholar 

  • Dikobe, D. G., & Luyt, A. S. (2010). Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Polymer Letters, 4(11), 729–741.

    Article  CAS  Google Scholar 

  • Doležalová, M., Molatová, Z., Buñka, F., Brezina, P., & Marounek, M. (2010). Effect of organic acids on growth of chilled chicken skin microflora. Journal of Food Safety, 30, 353–365.

    Article  Google Scholar 

  • Downes, F. P., & Ito, K. (Eds.). (2001). Compendium for the microbiological examination of foods (4th ed.). Washington: American Public Health Association (APHA).

    Google Scholar 

  • El-Naggara, M. M. A., & Faragb, M. G. (2010). Physical and biological treatments of polyethylene-rice starch plastic films. Journal of Hazardous Materials, 176, 878–883.

    Article  Google Scholar 

  • El-Shafei, H. A., El-Nasser, N. H. A., Kansoh, A. L., & Ali, A. M. (1998). Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polymer Degradation and Stability, 62, 361–365.

    Article  CAS  Google Scholar 

  • Espitia, P. J. P., Soares, N. F. F., Coimbra, J. S. R., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology, 5(5), 1447–1464.

    Article  CAS  Google Scholar 

  • Faustman, C., & Cassens, R. G. (1990). The biochemical basis for discoloration in fresh meat: a review. Journal of Muscle Foods, 1, 217–243.

    Article  Google Scholar 

  • Food and Drug Administration (FDA) (2013). Code of federal regulations. Part 184—direct food substances affirmed as generally recognized as safe sec. 184.1033: citric acid. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1033. Accessed 23 July 2013.

  • Foralosso, F. B., Fronza, N., dos Santos, J. H., Capeletti, L. B., & Quadri, M. G. N. (2013). The use of duo-functional PVC film for conservation of minimally processed apples. Food and Bioprocess Technology. doi:10.1007/s11947-013-1233-2.

    Google Scholar 

  • Garg, S., & Jana, A. K. (2007). Studies on the properties and characteristics of starch-LDPE blend films using cross-linked, glycerol modified, cross-linked and glycerol modified starch. European Polymer Journal, 43, 3976–3987.

    Article  CAS  Google Scholar 

  • Garg, S., & Jana, A. K. (2011). Effect of propylation of starch with different degrees of substitution on the properties and characteristics of starch-low density polyethylene blend films. Journal of Applied Polymer Science, 122, 2197–2208.

    Article  CAS  Google Scholar 

  • Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, an thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477–483.

    Article  CAS  Google Scholar 

  • González-Fandos, E., Herrera, B., & Maya, N. (2009). Efficacy of citric acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. International Journal of Food Science and Technology, 44, 262–268.

    Article  Google Scholar 

  • Hood, D. E., & Riordan, E. B. (1973). Discoloration in pre-packaged beef: measurement by reflectance spectrophotometry and shopper discrimination. Journal of Food Technology, 8, 333–343.

    Article  CAS  Google Scholar 

  • Hwang, S. W., Shim, J. K., Selke, S., Soto-Valdez, H., Matuana, L., Rubino, M., & Auras, R. (2013). Migration of α-tocopherol and resveratrol from poly(l-lactic acid)/starch blends films into ethanol. Journal of Food Engineering, 116, 814–828.

    Article  CAS  Google Scholar 

  • Instituto Adolfo Lutz (2005). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Métodos físico-químicos para análise de alimentos. Brasília.

  • Isdell, E., Allen, P., Doherty, A., & Butler, F. (2003). Effect of packaging cycle on the colour stability of six beef muscles stored in a modified atmosphere mother pack system with oxygen scavengers. International Journal of Science and Technology, 38, 623–632.

    CAS  Google Scholar 

  • Jay, J. M. (1992). Modern food microbiology (4th ed.). New York: Chapman & Hall.

    Book  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058–2076.

    Article  Google Scholar 

  • Jokar, M., Rahman, R. A., Ibrahim, N. A., Abdullah, L. C., & Tan, C. P. (2012). Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food and Bioprocess Technology, 5(2), 719–728.

    Article  CAS  Google Scholar 

  • Junqueira, M. S., Soares, N. F. F., Reis, R. C., Carneiro, J. D. S., Benicio, R. T., & Yokota, S. R. C. (2009). Efeito de embalagens ativas no escurecimento enzimático de batatas (Solanum tuberosum) fatiadas e minimamente processadas. Semina: Ciências Agrárias, 30(3), 613–618.

    CAS  Google Scholar 

  • Ke, S., Huang, Y., Decker, E. A., & Hultin, H. O. (2009). Impact of citric acid on the tenderness, microstructure and oxidative stability of beef muscle. Meat Science, 82, 113–118.

    Article  CAS  Google Scholar 

  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2013). Migration of antimicrobial agents from starch-based films into a food simulant. LWT – Food Science and Technology, 50, 432–438.

    Article  CAS  Google Scholar 

  • Kweon, D.-K., Cha, D.-S., Park, H.-J., & Lim, S.-T. (2000). Starch-g-polycaprolactone copolymerization using diisocyanate intermediates and thermal characteristics of the copolymers. Journal of Applied Polymer Science, 78(5), 986–993.

    Article  CAS  Google Scholar 

  • Lee, K. Y., Shim, J., & Lee, H. G. (2004). Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 56, 251–254.

    Article  CAS  Google Scholar 

  • López-De-Dicastillo, C., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2011). Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. Journal of Food Engineering, 104, 380–386.

    Article  Google Scholar 

  • Ma, X. F., Yu, J. G., & Ma, Y. B. (2005). Urea and formamide as a mixed plasticizer for thermoplastic wheat flour. Carbohydrate Polymers, 60, 111–116.

    Article  CAS  Google Scholar 

  • Ma, X., Chang, P. R., Yu, J., & Wang, N. (2008). Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites. Carbohydrate Polymers, 71(2), 229–234.

    Article  CAS  Google Scholar 

  • Maa, X., Chang, P. R., Yang, J., & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymers, 75, 472–478.

    Article  Google Scholar 

  • Mani, R., & Bhattacharya, M. (1998). Property’s injection moulded starch/synthetic polymer blends—III. Effect of amylopectin to amylase ratio in starch. European Polymer Journal, 34, 1467–1475.

    Article  CAS  Google Scholar 

  • Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine, 14(2), 127–135.

    CAS  Google Scholar 

  • Miranda, V. R., & Carvalho, A. J. F. (2011). Blendas compatíveis de amido termoplástico e polietileno de baixa densidade compatibilizadas com ácido cítrico. Polímeros, 21(5), 353–360.

    Article  CAS  Google Scholar 

  • Morrissey, P. A., Sheehy, P. J. A., Galvin, K., Kerry, J. P., & Buckley, D. J. (1998). Lipid stability in meat and meat products. Meat Science, 49, 73–86.

    Article  Google Scholar 

  • Muriel-Galet, V., Cerisuelo, J. P., López-Carballo, G., & Lara, M. (2012). Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology, 157, 195–201.

    Article  CAS  Google Scholar 

  • Ning, W., Jiugao, Y., Xiaofei, M., & Ying, W. (2007). The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydrate Polymers, 67, 446–453.

    Article  Google Scholar 

  • Nishida, H., & Tokiwa, Y. (1993). Distribution of poly(β-hydroxybutirate) and poly(-caprolactone) aerobic degrading microorganisms in different environments. Carbohydrate Polymers, 59, 1–9.

    Google Scholar 

  • Park, J. W., Im, S. S., Kim, S. H., & Kim, Y. H. (2000). Biodegradable polymer blends of poly(l-lactic acid) and gelatinized starch. Polymer Engineering & Science, 40(12), 2539–2550.

    Article  CAS  Google Scholar 

  • Pascoal, A. M., Mitidieri, S., & Fernandes, K. F. (2011). Immobilisation of α-amylase from Aspergillus niger onto polyaniline. Food and Bioproducts Processing, 89(4), 300–306.

    Article  CAS  Google Scholar 

  • Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166.

    Article  CAS  Google Scholar 

  • Pedroso, A. G., & Rosa, D. S. (2005). Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohydrate Polymers, 59, 1–9.

    Article  CAS  Google Scholar 

  • Pires, A. C. S., Soares, N. F. F., Andrade, N. J., Silva, L. H., Camilloto, G., & Campos, B. P. (2008). Development and evaluation of active packaging for sliced mozzarella preservation. Packaging Technology & Science, 7, 375–383.

    Article  Google Scholar 

  • Raharjo, S., Sofos, J. N., & Schmidt, G. R. (1992). Improved speed, specificity and limit of determination of an aqueous acid extraction thiobarbituric acid-C18 method for measuring lipid peroxidation in beef. Journal of Agricultural and Food Chemistry, 40(12), 2182–2185.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Karim, R., Mustafa, A. I., & Khan, M. A. (2012). Preparation and characterization of bioblends from gelatin and linear low density polyethylene (LLDPE) by extrusion method. Journal of Adhesion Science and Technology, 26, 1281–1294.

    Google Scholar 

  • Renerre, M. (1990). Review: factors involved in the discoloration of beef meat. International Journal of Food Science and Technology, 25, 613–630.

    Article  CAS  Google Scholar 

  • Ruiz, H. V., Martín-Martínez, E. S., & Aguilar Méndez, M. A. (2011). Biodegradability of polyethylene-starch blends prepared by extrusion and molded by injection: evaluated by response surface methodology. Starch, 63, 42–51.

    Article  Google Scholar 

  • Santonja-Blasco, L., Contat-Rodrigo, L., Moriana-Torro, R., & Ribes-Greus, A. (2007). Thermal characterization of polyethylene blends with a biodegradable masterbatch subjected to thermo-oxidative treatment and subsequent soil burial test. Journal of Applied Polymer Science, 106, 2218–2230.

    Article  CAS  Google Scholar 

  • Shah, P. B., Bandopadhyay, S., & Bellare, J. R. (1995). Environmentally degradable starch filled low density polyethylene. Polymer Degradation and Stability, 47, 165–173.

    Article  CAS  Google Scholar 

  • Sheard, P. R., Enser, M., Wood, J. D., Nute, G. R., Gill, B. P., & Richardson, R. I. (2000). Shelf life and quality of pork products with raised n-3 PUFA. Meat Science, 55, 213–221.

    Article  CAS  Google Scholar 

  • Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., Botrel, D. A., & Gonçalves, M. P. J. (2007). Active film incorporated with sorbic acid on pastry dough conservation. Food Control, 18, 1063–1067.

    Article  CAS  Google Scholar 

  • Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials: review. Progress in Polymer Science, 36, 1254–1276.

    Article  CAS  Google Scholar 

  • Soares, N. F. F., Sa, S. C. A., Santiago-Silva, P. Espitia, P.J.P., Gonçalves, M.P.J.C., Lopez, M.J.G., et al. (2010). Active and intelligent packaging for milk and milk products. In: J. S. R. Coimbra, J. A. Teixeira (Eds.), Engineering aspects of milk and dairy products (pp 175–199). Taylor & Francis Group

  • St-Pierre, N., Favis, B. D., Ramsay, B. A., Ramsay, J. A., & Verhoogt, H. (1997). Processing and characterization of thermoplastic starch/polyethylene blends. Polymer, 38, 648–655.

    Article  Google Scholar 

  • Sun, X. D., & Holley, R. A. (2012). Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Comprehensive Reviews in Food Science and Food Safety, 11, 340–354.

    Article  Google Scholar 

  • Sunilkumar, M., Francis, T., Thachil, E. T., & Sujith, A. (2012). Low density polyethylene-chitosan composites: a study based on biodegradation. Chemical Engineering Journal, 204–206, 114–124.

    Article  Google Scholar 

  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420.

    Article  CAS  Google Scholar 

  • Thakore, I. M., Desai, S., Sarawade, B. D., & Devi, S. (2001). Studies on biodegradability, morphology and thermomechanical properties of LDPE/modified starch blends. European Polymer Journal, 37, 151–160.

    Article  CAS  Google Scholar 

  • Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14, 71–78.

    Article  CAS  Google Scholar 

  • Troy, D. J., & Kerry, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science, 86, 214–226.

    Article  CAS  Google Scholar 

  • Versant, E. F., Van, D. E. R., Voort, P., & Vrancken, K. C. (1995). Characterization and chemical modification of the silica surface (p. 93). Amsterdam: Elsevier Science BV. In Studies in surface science and catalysis.

    Google Scholar 

  • Vieyra, H., Martín-Martínez, E. S., & Aguilar-Méndez, M. A. (2011). Biodegradability of polyethylene-starch blends prepared by extrusion and model by injection: evaluated by response surface methodology. Starch, 63, 42–51.

    Article  Google Scholar 

  • Vieyra, H., Aguilar-Méndez, M. A., & Martín-Martínez, E. S. (2013). Study of biodegradation evolution during composting of polyethylene-starch blends using scanning electron microscopy. Journal of Applied Polymer Science, 127(2), 845–853.

    Article  CAS  Google Scholar 

  • Vinhas, G. M., Lima, S. M., Santos, L. V., Lima, M. A. G. A., & Almeida, Y. M. B. (2007). Evaluation of the types of starch for preparation of LDPE/starch blend. Brazilian Archives of Biology and Technology, 50, 361–370.

    Article  CAS  Google Scholar 

  • Walker, A. M., Tao, Y., & Torkelson, J. M. (2007). Polyethylene/starch blends with enhanced oxygen barrier and mechanical properties: effect of granule morphology damage by solid-state shear pulverization. Polymer, 48, 1066–1074.

    Article  CAS  Google Scholar 

  • Yildiz-Turp, G., & Serdaroglu, M. (2010). Effects of using plum puree on some properties of low fat beef patties. Meat Science, 86, 896–900.

    Article  Google Scholar 

  • Yua, F., Prashanthaa, K., Soulestina, J., Lacrampea, M.-F., & Krawczaka, P. (2013). Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydrate Polymers, 91, 253–261.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Institute of Santa Catarina (IFC); Federal University of Santa Catarina (UFSC); the Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS); and Videplast. A. V. Junior appreciates all their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Gabriela Novy Quadri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Júnior, A.V., Fronza, N., Foralosso, F.B. et al. Biodegradable Duo-functional Active Film: Antioxidant and Antimicrobial Actions for the Conservation of Beef. Food Bioprocess Technol 8, 75–87 (2015). https://doi.org/10.1007/s11947-014-1376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1376-9

Keywords

Navigation