Skip to main content

Advertisement

Log in

Sleep-Related Epilepsy

  • Sleep Disorders (A Iranzo, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Sleep has a strong influence on interictal epileptiform discharges and on epileptic seizures. Interictal epileptiform discharges are activated by sleep deprivation and sleep, and some epilepsies occur almost exclusively during sleep. Treatment of sleep-related epilepsy should take in account the type of epileptic syndrome, the type of seizures, the patient characteristics, and also the pharmacokinetics of the drug. Proper characterization of the epilepsy is essential to choose appropriate antiepileptic drugs. Drugs effective in focal epilepsy may be used to treat benign genetic focal epilepsies such as rolandic epilepsy and other focal (frontal or not) sleep epilepsies. These include both classical (such as carbamazepine) and new (such as levetiracetam and lacosamide) antiepileptic drugs. Drug-resistant cases should be evaluated for epilepsy surgery, which may be efficacious in this setting. Valproate, lamotrigine, topiramate, levetiracetam, and perampanel are effective against generalized tonic-clonic seizures in genetic generalized epilepsies, which frequently happen on awakening. Risks of valproate should be considered before prescribing it to women of childbearing age. Specific syndromes such as ESES require specific treatment such as a combination of high dose steroids, benzodiazepines, levetiracetam, and even surgery when an epileptogenic lesion is present. Sleep disorders that may worsen epilepsy such as obstructive sleep apnea or insomnia should be adequately treated to improve seizure frequency. Adequate control of seizures during sleep (especially generalized tonic-clonic seizures) decreases risk of sudden unexpected death in epilepsy (SUDEP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gowers W. Epilepsy and other chronic convulsive disorders. London: William Wood; 1885.

    Google Scholar 

  2. Minecan D, Natarajan A, Marzec M, Malow B. Relationship of epileptic seizures to sleep stage and sleep depth. Sleep. 2002;25:899–904.

    PubMed  Google Scholar 

  3. Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep–wake cycle: differences by seizure onset site. Neurology. 2001;56:1453–9.

    Article  CAS  PubMed  Google Scholar 

  4. Sammaritano M, Gigli GL, Gotman J. Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy. Neurology. 1991;41:290–7.

    Article  CAS  PubMed  Google Scholar 

  5. Malow BA, Lin X, Kushwaha R, Aldrich MS. Interictal spiking increases with sleep depth in temporal lobe epilepsy. Epilepsia. 1998;39:1309–16.

    Article  CAS  PubMed  Google Scholar 

  6. Malow BA, Bowes RJ, Lin X. Predictors of sleepiness in epilepsy patients. Sleep. 1997;20:1105–10.

    CAS  PubMed  Google Scholar 

  7. Okanari K, Baba S, Otsubo H, et al. Rapid eye movement sleep reveals epileptogenic spikes for resective surgery in children with generalized interictal discharges. Epilepsia. 2015;56:1445–53. This article highlights the importance of sleep recording to lateralize the irritative zone in patients with generalized discharges, who can then become surgical candidates.

    PubMed  Google Scholar 

  8. Badawy RA, Curatolo JM, Newton M, Berkovic SF, Macdonell RA. Sleep deprivation increases cortical excitability in epilepsy: syndrome-specific effects. Neurology. 2006;67:1018–22.

    Article  CAS  PubMed  Google Scholar 

  9. Ferlisi M, Shorvon S. Seizure precipitants (triggering factors) in patients with epilepsy. Epilepsy Behav. 2014;33:101–5.

    Article  PubMed  Google Scholar 

  10. Rajna P, Veres J. Correlations between night sleep duration and seizure frequency in temporal lobe epilepsy. Epilepsia. 1993;34:574–9.

    Article  CAS  PubMed  Google Scholar 

  11. Fountain NB, Kim JS, Lee SI. Sleep deprivation activates epileptiform discharges independent of the activating effects of sleep. J Clin Neurophysiol. 1998;15:69–75.

    Article  CAS  PubMed  Google Scholar 

  12. Ellingson RJ, Wilken K, Bennett DR. Efficacy of sleep deprivation as an activation procedure in epilepsy patients. J Clin Neurophysiol. 1984;1:83–101.

    Article  CAS  PubMed  Google Scholar 

  13. Foldvary-Schaefer N, Grigg-Damberger M. Sleep and epilepsy: what we know, don’t know, and need to know. J Clin Neurophysiol. 2006;23:4–20.

    Article  PubMed  Google Scholar 

  14. Leach JP, Stephen LJ, Salveta C, Brodie MJ. Which electroencephalography (EEG) for epilepsy? The relative usefulness of different EEG protocols in patients with possible epilepsy. J Neurol Neurosurg Psychiatry. 2006;77:1040–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giorgi FS, Perini D, Maestri M, et al. Usefulness of a simple sleep-deprived EEG protocol for epilepsy diagnosis in de novo subjects. Clin Neurophysiol. 2013;124:2101–7. This study analyzes the yield of sleep deprived EEG in patients with suspected seizures (focal or generalized) and normal baseline EEG.

    Article  PubMed  Google Scholar 

  16. Giorgi FS, Guida M, Caciagli L, et al. What is the role for EEG after sleep deprivation in the diagnosis of epilepsy? Issues, controversies, and future directions. Neurosci Biobehav Rev. 2014;47:533–48. This article review the usefulness of sleep-deprived EEG in the diagnosis of epilepsy, discussing critically the availabe literature on the subject.

    Article  PubMed  Google Scholar 

  17. Schmitt B. Sleep and epilepsy syndromes. Neuropediatrics. 2015;46:171–80. This is a well structured and complete review on the influence of sleep on epilepsy syndromes.

    Article  PubMed  Google Scholar 

  18. Guerrini R, Pellock JM. Age-related epileptic encephalopathies. Handb Clin Neurol. 2012;107:179–93.

    Article  PubMed  Google Scholar 

  19. Watanabe K, Negoro T, Aso K, Matsumoto A. Reappraisal of interictal electroencephalograms in infantile spasms. Epilepsia. 1993;34:679–85.

    Article  CAS  PubMed  Google Scholar 

  20. Fattinger S, Schmitt B, Bolsterli Heinzle BK, Critelli H, Jenni OG, Huber R. Impaired slow wave sleep downscaling in patients with infantile spasms. Eur J Paediatr Neurol. 2015;19:134–42.

    Article  PubMed  Google Scholar 

  21. Lerman P. Benign partial epilepsies with centro-temporal spikes. In: Roger J, Dravet C, Bureau M, Dreifuss F, Wolf P, editors. Epileptic syndromes in infancy, childhood and adolescence. London: John Libbey Eurotext; 1985. p. 150–8.

    Google Scholar 

  22. Proposal for classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the international league against epilepsy. Epilepsia. 1985;26:268–78.

    Article  Google Scholar 

  23. Koutroumanidis M. Panayiotopoulos syndrome: an important electroclinical example of benign childhood system epilepsy. Epilepsia. 2007;48:1044–53.

    Article  PubMed  Google Scholar 

  24. Panayiotopoulos CP, Michael M, Sanders S, Valeta T, Koutroumanidis M. Benign childhood focal epilepsies: assessment of established and newly recognized syndromes. Brain. 2008;131:2264–86.

    Article  PubMed  Google Scholar 

  25. Sanchez FI, Chapman K, Peters JM, et al. Treatment for continuous spikes and waves during sleep (CSWS): survey on treatment choices in North America. Epilepsia. 2014;55:1099–108. This study reports the results of a survey about the different drugs and doses used to treat CSWS (valproate, corticosteroids, benzodiazepines, etc) and the goals of the treatment in North America.

    Article  CAS  Google Scholar 

  26. Patry G, Lyagoubi S, Tassinari CA. Subclinical “electrical status epilepticus” induced by sleep in children. A clinical and electroencephalographic study of six cases. Arch Neurol. 1971;24:242–52.

    Article  CAS  PubMed  Google Scholar 

  27. Tassinari C. Electrical status epilepticus during sleep (ESE or CSWS) including acquired epileptic aphasia (Landau-Kleffner syndrome). In: Roger J, Bureau M, Dravet C, Genton P, Tassinari C, Wolf P, editors. Epileptic syndromes in infancy, childhood and adolescence. London: John Libbey Eurotext LTd; 2005. p. 295–314.

    Google Scholar 

  28. Kurth S, Jenni OG, Riedner BA, Tononi G, Carskadon MA, Huber R. Characteristics of sleep slow waves in children and adolescents. Sleep. 2010;33:475–80.

    PubMed  PubMed Central  Google Scholar 

  29. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    Article  CAS  PubMed  Google Scholar 

  30. Roulet PE, Davidoff V, Despland PA, Deonna T. Mental and behavioural deterioration of children with epilepsy and CSWS: acquired epileptic frontal syndrome. Dev Med Child Neurol. 1993;35:661–74.

    Google Scholar 

  31. Galanopoulou AS, Bojko A, Lado F, Moshe SL. The spectrum of neuropsychiatric abnormalities associated with electrical status epilepticus in sleep. Brain Dev. 2000;22:279–95.

    Article  CAS  PubMed  Google Scholar 

  32. Lemke JR, Lal D, Reinthaler EM, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45:1067–72. This study reports the finding of alterations of the gene encoding the NMDA receptor subunit NR2A as an important risk factor for idopathic focal epilepsies, especially in patients with more severe phenotypes.

    Article  CAS  PubMed  Google Scholar 

  33. Carvill GL, Regan BM, Yendle SC, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45:1073–6. This study reports the finding of GRIN2A mutations in families with aphasia epilepsy syndromes, establishing the genetic basis for some of these patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114–26.

    Article  CAS  PubMed  Google Scholar 

  35. Kleen JK, Scott RC, Holmes GL, et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology. 2013;81:18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. LANDAU WM, KLEFFNER FR. Syndrome of acquired aphasia with convulsive disorder in children. Neurology. 1957;7:523–30.

    Article  CAS  PubMed  Google Scholar 

  37. Veggiotti P, Beccaria F, Guerrini R, Capovilla G, Lanzi G. Continuous spike-and-wave activity during slow-wave sleep: syndrome or EEG pattern? Epilepsia. 1999;40:1593–601.

    Article  CAS  PubMed  Google Scholar 

  38. Van BP, King MD, Paquier P, et al. Acquired auditory agnosia in childhood and normal sleep electroencephalography subsequently diagnosed as Landau-Kleffner syndrome: a report of three cases. Dev Med Child Neurol. 2013;55:575–9.

    Article  Google Scholar 

  39. Caraballo RH, Cejas N, Chamorro N, Kaltenmeier MC, Fortini S, Soprano AM. Landau-Kleffner syndrome: a study of 29 patients. Seizure. 2014;23:98–104.

    Article  PubMed  Google Scholar 

  40. Deonna TW. Acquired epileptiform aphasia in children (Landau-Kleffner syndrome). J Clin Neurophysiol. 1991;8:288–98.

    Article  CAS  PubMed  Google Scholar 

  41. Aicardi J, Chevrie JJ. Atypical benign partial epilepsy of childhood. Dev Med Child Neurol. 1982;24:281–92.

    Article  CAS  PubMed  Google Scholar 

  42. Conroy J, McGettigan PA, McCreary D, et al. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia. 2014;55:858–65.

    Article  CAS  PubMed  Google Scholar 

  43. Marwick K, Skehel P, Hardingham G, Wyllie D. Effect of a GRIN2A de novo mutation associated with epilepsy and intellectual disability on NMDA receptor currents and Mg(2+) block in cultured primary cortical neurons. Lancet. 2015;385 Suppl 1:S65. This study reports the effects of the disease associated mutation GluN2A(N615K) on the function of the NMDA receptor and NMDA current density, with possible pathogenic effect.

    Article  PubMed  Google Scholar 

  44. Lesca G, Rudolf G, Bruneau N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45:1061–6.

    Article  CAS  PubMed  Google Scholar 

  45. Lal D, Steinbrucker S, Schubert J, et al. Investigation of GRIN2A in common epilepsy phenotypes. Epilepsy Res. 2015;115:95–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kasteleijn-Nolst Trenite DG, Schmitz B, Janz D, et al. Consensus on diagnosis and management of JME: from founder’s observations to current trends. Epilepsy Behav. 2013;28 Suppl 1:S87–90. This is an interesting expert consensus on diagnostic criteria for JME and updated guidelines on treatment, published after an international workshop.

  47. Mayer TA, Schroeder F, May TW, Wolf PT. Perioral reflex myoclonias: a controlled study in patients with JME and focal epilepsies. Epilepsia. 2006;47:1059–67.

    Article  PubMed  Google Scholar 

  48. Zambrelli E, Canevini MP. Pre- and post-dormitum epilepsies: idiopathic generalized epilepsies. Sleep Med. 2011;12 Suppl 2:S17–21.

    Article  PubMed  Google Scholar 

  49. Fittipaldi F, Curra A, Fusco L, Ruggieri S, Manfredi M. EEG discharges on awakening: a marker of idiopathic generalized epilepsy. Neurology. 2001;56:123–6.

    Article  CAS  PubMed  Google Scholar 

  50. Janz D. Epilepsy with grand mal on awakening and sleep-waking cycle. Clin Neurophysiol. 2000;111 Suppl 2:S103–10.

    Article  PubMed  Google Scholar 

  51. Provini F, Plazzi G, Tinuper P, Vandi S, Lugaresi E, Montagna P. Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain. 1999;122(Pt 6):1017–31.

    Article  PubMed  Google Scholar 

  52. Combi R, Dalpra L, Tenchini ML, Ferini-Strambi L. Autosomal dominant nocturnal frontal lobe epilepsy—a critical overview. J Neurol. 2004;251:923–34.

  53. Scheffer IE, Bhatia KP, Lopes-Cendes I, et al. Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain. 1995;118(Pt 1):61–73.

    Article  PubMed  Google Scholar 

  54. Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol. 2015;6:22. The article discusses some possible pathogenetic mechanisms of ADFLE in the light of recent advances about the nAChR role in different cerebral regions.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hildebrand MS, Tankard R, Gazina EV, et al. PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy. Ann Clin Transl Neurol. 2015;2:821–30. The article reports a newly discovered mutation in a family with nocturnal frontal lobe epilepsy and recessive inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Oldani A, Zucconi M, Asselta R, et al. Autosomal dominant nocturnal frontal lobe epilepsy. A video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome. Brain. 1998;121(Pt 2):205–23.

    Article  PubMed  Google Scholar 

  58. Halasz P, Kelemen A, Szucs A. The role of NREM sleep micro-arousals in absence epilepsy and in nocturnal frontal lobe epilepsy. Epilepsy Res. 2013;107:9–19.

    Article  PubMed  Google Scholar 

  59. Tinuper P, Cerullo A, Cirignotta F, Cortelli P, Lugaresi E, Montagna P. Nocturnal paroxysmal dystonia with short-lasting attacks: three cases with evidence for an epileptic frontal lobe origin of seizures. Epilepsia. 1990;31:549–56.

    Article  CAS  PubMed  Google Scholar 

  60. Mai R, Sartori I, Francione S, et al. Sleep-related hyperkinetic seizures: always a frontal onset? Neurol Sci. 2005;26 Suppl 3:s220–4.

    Article  PubMed  Google Scholar 

  61. Nobili L, Cossu M, Mai R, et al. Sleep-related hyperkinetic seizures of temporal lobe origin. Neurology. 2004;62:482–5.

    Article  CAS  PubMed  Google Scholar 

  62. Proserpio P, Cossu M, Francione S, et al. Insular-opercular seizures manifesting with sleep-related paroxysmal motor behaviors: a stereo-EEG study. Epilepsia. 2011;52:1781–91.

    Article  PubMed  Google Scholar 

  63. Proserpio P, Cossu M, Francione S, et al. Epileptic motor behaviors during sleep: anatomo-electro-clinical features. Sleep Med. 2011;12 Suppl 2:S33–8.

    Article  PubMed  Google Scholar 

  64. Nobili L, Francione S, Cardinale F, Lo RG. Epileptic nocturnal wanderings with a temporal lobe origin: a stereo-electroencephalographic study. Sleep. 2002;25:669–71.

  65. Bernasconi A, Andermann F, Cendes F, Dubeau F, Andermann E, Olivier A. Nocturnal temporal lobe epilepsy. Neurology. 1998;50:1772–7.

    Article  CAS  PubMed  Google Scholar 

  66. Foldvary-Schaefer N, Andrews ND, Pornsriniyom D, Moul DE, Sun Z, Bena J. Sleep apnea and epilepsy: who’s at risk? Epilepsy Behav. 2012;25:363–7. This study reports the OSA predictors in patients unselected for epilepsy severity and sleep disorder symptoms. Its results support the routine OSA screening in adult epilepsy clinics.

    Article  PubMed  Google Scholar 

  67. Malow BA. The interaction between sleep and epilepsy. Epilepsia. 2007;48 Suppl 9:36–8.

    Article  PubMed  Google Scholar 

  68. Malow BA, Levy K, Maturen K, Bowes R. Obstructive sleep apnea is common in medically refractory epilepsy patients. Neurology. 2000;55:1002–7.

    Article  CAS  PubMed  Google Scholar 

  69. Manni R, Terzaghi M, Arbasino C, Sartori I, Galimberti CA, Tartara A. Obstructive sleep apnea in a clinical series of adult epilepsy patients: frequency and features of the comorbidity. Epilepsia. 2003;44:836–40.

    Article  PubMed  Google Scholar 

  70. Economou NT, Dikeos D, Andrews N, Foldvary-Schaefer N. Use of the sleep apnea scale of the sleep disorders questionnaire (SA-SDQ) in adults with epilepsy. Epilepsy Behav. 2014;31:123–6.

    Article  PubMed  Google Scholar 

  71. Chihorek AM, Bou-Khalil B, Malow BA. Obstructive sleep apnea is associated with seizure occurrence in older adults with epilepsy. Neurology. 2007;69:1823–7.

    Article  PubMed  Google Scholar 

  72. Iranzo A, Santamaria J, Tolosa E. Idiopathic rem sleep behaviour disorder: diagnosis, management and research implications. Lancet Neurol. 2016. A very recent and thorough review of RBD by well known experts in the field.

  73. Manni R, Terzaghi M, Zambrelli E. REM sleep behaviour disorder in elderly subjects with epilepsy: frequency and clinical aspects of the comorbidity. Epilepsy Res. 2007;77:128–33.

    Article  PubMed  Google Scholar 

  74. Clark D, Riney K. A population-based post mortem study of sudden unexpected death in epilepsy. J Clin Neurosci. 2016;23:58–62.

    Article  PubMed  Google Scholar 

  75. Lhatoo S, Noebels J, Whittemore V. Sudden unexpected death in epilepsy: identifying risk and preventing mortality. Epilepsia. 2015;56:1700–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ficker DM. Sudden unexplained death and injury in epilepsy. Epilepsia. 2000;41 Suppl 2:S7–12.

    Article  PubMed  Google Scholar 

  77. Ficker DM, So EL, Shen WK, et al. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology. 1998;51:1270–4.

    Article  CAS  PubMed  Google Scholar 

  78. Scorza CA, Cavalheiro EA, Scorza FA. SUDEP research: challenges for the future. Epilepsy Behav. 2013;28:134–5.

    Article  PubMed  Google Scholar 

  79. Surges R, Thijs RD, Tan HL, Sander JW. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol. 2009;5:492–504.

    Article  CAS  PubMed  Google Scholar 

  80. Hesdorffer DC, Tomson T, Benn E, et al. Combined analysis of risk factors for SUDEP. Epilepsia. 2011;52:1150–9.

    Article  PubMed  Google Scholar 

  81. Harden CL. SUDEP prevention “position statement”. Epilepsy Curr. 2015;15:321–2.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lamberts RJ, Thijs RD, Laffan A, Langan Y, Sander JW. Sudden unexpected death in epilepsy: people with nocturnal seizures may be at highest risk. Epilepsia. 2012;53:253–7. This study compares living controls with patients who died of SUDEP (confirmed autopsy) to find out predictive factors regarding seizure frequency and presentation. Nocturnal seizures were an indepenent predictor for SUDEP.

    Article  PubMed  Google Scholar 

  83. Khiari HM, Franceschetti S, Jovic N, Mrabet A, Genton P. Death in Unverricht-Lundborg disease. Neurol Sci. 2009;30:315–8.

    Article  PubMed  Google Scholar 

  84. Weber P, Bubl R, Blauenstein U, Tillmann BU, Lutschg J. Sudden unexplained death in children with epilepsy: a cohort study with an eighteen-year follow-up. Acta Paediatr. 2005;94:564–7.

    Article  PubMed  Google Scholar 

  85. Aurlien D, Leren TP, Tauboll E, Gjerstad L. New SCN5A mutation in a SUDEP victim with idiopathic epilepsy. Seizure. 2009;18:158–60.

    Article  PubMed  Google Scholar 

  86. Kloster R, Borresen HC, Hoff-Olsen P. Sudden death in two patients with epilepsy and the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Seizure. 1998;7:419–20.

    Article  CAS  PubMed  Google Scholar 

  87. McLean BN, Wimalaratna S. Sudden death in epilepsy recorded in ambulatory EEG. J Neurol Neurosurg Psychiatry. 2007;78:1395–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mostacci B, Bisulli F, Vignatelli L, et al. Incidence of sudden unexpected death in nocturnal frontal lobe epilepsy: a cohort study. Sleep Med. 2015;16:232–6. This study analyzes the incidence of SUDEP in a cohort of patients with frontal lobe epilepsy and almost exclusively nocturnal seizures. The incidence was not different from the rates reported for prevalent epilepsy populations.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nobili L, Proserpio P, Rubboli G, Montano N, Didato G, Tassinari CA. Sudden unexpected death in epilepsy (SUDEP) and sleep. Sleep Med Rev. 2011;15:237–46.

    Article  PubMed  Google Scholar 

  90. Ryvlin P, Nashef L, Lhatoo SD, et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12:966–77. This study reports the results of a worldwide survey to describe the features of cardiorespiratory arrests occurring during video EEG monitoring. The authors recommend improve supervision in the monitoring units to avoid the cardiorespiratory depression after generalized tonic clonic seizures, especially during sleep.

    Article  PubMed  Google Scholar 

  91. Hesdorffer DC, Tomson T. Adjunctive antiepileptic drug therapy and prevention of SUDEP. Lancet Neurol. 2011;10:948–9.

    Article  PubMed  Google Scholar 

  92. Poh MZ, Loddenkemper T, Reinsberger C, et al. Autonomic changes with seizures correlate with postictal EEG suppression. Neurology. 2012;78:1868–76.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Coppola G, Franzoni E, Verrotti A, et al. Levetiracetam or oxcarbazepine as monotherapy in newly diagnosed benign epilepsy of childhood with centrotemporal spikes (BECTS): an open-label, parallel group trial. Brain Dev. 2007;29:281–4.

    Article  PubMed  Google Scholar 

  94. Eeg-Olofsson O. Rolandic epilepsy. In: Bazil CW, Malow B, Sammaritano M, editors. Sleep and epilepsy: the clinical sprectrum. 1st ed. Amsterdam: Elservier Science B.V.; 2002. p. 257–63.

    Google Scholar 

  95. Genton P. When antiepileptic drugs aggravate epilepsy. Brain Dev. 2000;22:75–80.

    Article  CAS  PubMed  Google Scholar 

  96. Oguni H. Treatment of benign focal epilepsies in children: when and how should be treated? Brain Dev. 2011;33:207–12.

    Article  PubMed  Google Scholar 

  97. Prats JM, Garaizar C, Garcia-Nieto ML, Madoz P. Antiepileptic drugs and atypical evolution of idiopathic partial epilepsy. Pediatr Neurol. 1998;18:402–6.

    Article  CAS  PubMed  Google Scholar 

  98. Rating D, Wolf C, Bast T. Sulthiame as monotherapy in children with benign childhood epilepsy with centrotemporal spikes: a 6-month randomized, double-blind, placebo-controlled study. Sulthiame Study Group. Epilepsia. 2000;41:1284–8.

    Article  CAS  PubMed  Google Scholar 

  99. Gross-Selbeck G. Treatment of “benign” partial epilepsies of childhood, including atypical forms. Neuropediatrics. 1995;26:45–50.

    Article  CAS  PubMed  Google Scholar 

  100. Deonna T. Rolandic epilepsy: neuropsychology of the active epilepsy phase. Epileptic Disord. 2000;2 Suppl 1:S59–61.

    PubMed  Google Scholar 

  101. Verrotti A, Coppola G, Manco R, et al. Levetiracetam monotherapy for children and adolescents with benign rolandic seizures. Seizure. 2007;16:271–5.

    Article  CAS  PubMed  Google Scholar 

  102. Xiao F, An D, Deng H, Chen S, Ren J, Zhou D. Evaluation of levetiracetam and valproic acid as low-dose monotherapies for children with typical benign childhood epilepsy with centrotemporal spikes (BECTS). Seizure. 2014;23:756–61. This study compares the efficacy of low doses of valproic acid and levetiracetam in children with newly diagnosed BECTS. Both drugs were equally effective to control seizures although valproic acid in this study improved EEG abnormalities to a greater extent.

    Article  PubMed  Google Scholar 

  103. Seegmuller C, Deonna T, Dubois CM, et al. Long-term outcome after cognitive and behavioral regression in nonlesional epilepsy with continuous spike-waves during slow-wave sleep. Epilepsia. 2012;53:1067–76.

    Article  PubMed  Google Scholar 

  104. Buzatu M, Bulteau C, Altuzarra C, Dulac O, Van BP. Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep. Epilepsia. 2009;50 Suppl 7:68–72.

    Article  CAS  PubMed  Google Scholar 

  105. Inutsuka M, Kobayashi K, Oka M, Hattori J, Ohtsuka Y. Treatment of epilepsy with electrical status epilepticus during slow sleep and its related disorders. Brain Dev. 2006;28:281–6.

    Article  PubMed  Google Scholar 

  106. Atkins M, Nikanorova M. A prospective study of levetiracetam efficacy in epileptic syndromes with continuous spikes-waves during slow sleep. Seizure. 2011;20:635–9.

    Article  PubMed  Google Scholar 

  107. Chhun S, Troude P, Villeneuve N, et al. A prospective open-labeled trial with levetiracetam in pediatric epilepsy syndromes: continuous spikes and waves during sleep is definitely a target. Seizure. 2011;20:320–5.

    Article  CAS  PubMed  Google Scholar 

  108. Nikanorova M, Miranda MJ, Atkins M, Sahlholdt L. Ketogenic diet in the treatment of refractory continuous spikes and waves during slow sleep. Epilepsia. 2009;50:1127–31.

    Article  PubMed  Google Scholar 

  109. Veggiotti P, Pera MC, Teutonico F, Brazzo D, Balottin U, Tassinari CA. Therapy of encephalopathy with status epilepticus during sleep (ESES/CSWS syndrome): an update. Epileptic Disord. 2012;14:1–11. This is an updated review about therapeutic options for ESES, including a personal approach by the authors who are experts in the field.

    PubMed  Google Scholar 

  110. van den Munckhof B, van Dee V, Sagi L, et al. Treatment of electrical status epilepticus in sleep: a pooled analysis of 575 cases. Epilepsia. 2015;56:1738–46.

    Article  PubMed  CAS  Google Scholar 

  111. Arzimanoglou A, French J, Blume WT, et al. Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol. 2009;8:82–93.

    Article  PubMed  Google Scholar 

  112. Perucca E, Gram L, Avanzini G, Dulac O. Antiepileptic drugs as a cause of worsening seizures. Epilepsia. 1998;39:5–17.

    Article  CAS  PubMed  Google Scholar 

  113. Tomson T, Battino D, Perucca E. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol. 2015. This is a position statement about indications of valproic acid in view of its risks when taken during pregnancy. It should not be prescribed to women of childbearing age when equally effective treatments are available.

  114. Crespel A, Genton P, Berramdane M, et al. Lamotrigine associated with exacerbation or de novo myoclonus in idiopathic generalized epilepsies. Neurology. 2005;65:762–4.

    Article  CAS  PubMed  Google Scholar 

  115. Biton V, Montouris GD, Ritter F, et al. A randomized, placebo-controlled study of topiramate in primary generalized tonic-clonic seizures. Topiramate YTC study group. Neurology. 1999;52:1330–7.

    Article  CAS  PubMed  Google Scholar 

  116. Noachtar S, Andermann E, Meyvisch P, Andermann F, Gough WB, Schiemann-Delgado J. Levetiracetam for the treatment of idiopathic generalized epilepsy with myoclonic seizures. Neurology. 2008;70:607–16.

    Article  CAS  PubMed  Google Scholar 

  117. Berkovic SF, Knowlton RC, Leroy RF, Schiemann J, Falter U. Placebo-controlled study of levetiracetam in idiopathic generalized epilepsy. Neurology. 2007;69:1751–60.

    Article  CAS  PubMed  Google Scholar 

  118. Velizarova R, Crespel A, Genton P, Serafini A, Gelisse P. Zonisamide for refractory juvenile absence epilepsy. Epilepsy Res. 2014;108:1263–6.

    Article  CAS  PubMed  Google Scholar 

  119. Benbadis SR. Practical management issues for idiopathic generalized epilepsies. Epilepsia. 2005;46 Suppl 9:125–32.

    Article  PubMed  Google Scholar 

  120. French JA, Krauss GL, Wechsler RT, et al. Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy: A randomized trial. Neurology. 2015. This is the pivotal study which showed that perampanel is more efficacious than placebo as add on treatment to reduce frequency of generalized tonic clonic seizures in patients with idiopathic generalized epilepsy.

  121. Yaqub BA, Waheed G, Kabiraj MM. Nocturnal epilepsies in adults. Seizure. 1997;6:145–9.

    Article  CAS  PubMed  Google Scholar 

  122. Romigi A, Marciani MG, Placidi F, et al. Oxcarbazepine in nocturnal frontal-lobe epilepsy: a further interesting report. Pediatr Neurol. 2008;39:298.

    Article  PubMed  Google Scholar 

  123. Raju GP, Sarco DP, Poduri A, Riviello JJ, Bergin AM, Takeoka M. Oxcarbazepine in children with nocturnal frontal-lobe epilepsy. Pediatr Neurol. 2007;37:345–9.

    Article  PubMed  Google Scholar 

  124. Picard F, Bertrand S, Steinlein OK, Bertrand D. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia. 1999;40:1198–209.

    Article  CAS  PubMed  Google Scholar 

  125. Oldani A, Manconi M, Zucconi M, Martinelli C, Ferini-Strambi L. Topiramate treatment for nocturnal frontal lobe epilepsy. Seizure. 2006;15:649–52.

    Article  PubMed  Google Scholar 

  126. Willoughby JO, Pope KJ, Eaton V. Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study. Epilepsia. 2003;44:1238–40.

    Article  CAS  PubMed  Google Scholar 

  127. Garcia-Morales I, Delgado RT, Falip M, Campos D, Garcia ME, Gil-Nagel A. Early clinical experience with lacosamide as adjunctive therapy in patients with refractory focal epilepsy and nocturnal seizures. Seizure. 2011;20:801–4.

    Article  PubMed  Google Scholar 

  128. Losurdo A, Proserpio P, Cardinale F, et al. Drug-resistant focal sleep related epilepsy: results and predictors of surgical outcome. Epilepsy Res. 2014;108:953–62. This is a retrospective study about outome of drug resistant focal sleep related epilepsy in 95 patients treated with surgery. At the end of the follow up almost 70% of the patients were free of seizures.

    Article  PubMed  Google Scholar 

  129. Guilhoto LM, Loddenkemper T, Vendrame M, Bergin A, Bourgeois BF, Kothare SV. Higher evening antiepileptic drug dose for nocturnal and early-morning seizures. Epilepsy Behav. 2011;20:334–7.

    Article  CAS  PubMed  Google Scholar 

  130. Eriksson SH. Epilepsy and sleep. Curr Opin Neurol. 2011;24:171–6.

    Article  PubMed  Google Scholar 

  131. Pornsriniyom D, Shinlapawittayatorn K, Fong J, Andrews ND, Foldvary-Schaefer N. Continuous positive airway pressure therapy for obstructive sleep apnea reduces interictal epileptiform discharges in adults with epilepsy. Epilepsy Behav. 2014;37:171–4.

    Article  PubMed  Google Scholar 

  132. Vendrame M, Auerbach S, Loddenkemper T, Kothare S, Montouris G. Effect of continuous positive airway pressure treatment on seizure control in patients with obstructive sleep apnea and epilepsy. Epilepsia. 2011;52:e168–71.

    Article  PubMed  Google Scholar 

  133. Segal E, Vendrame M, Gregas M, Loddenkemper T, Kothare SV. Effect of treatment of obstructive sleep apnea on seizure outcomes in children with epilepsy. Pediatr Neurol. 2012;46:359–62. This study reports the positive effect of surgical treatment of OSA on seizure frequency in children with epilepsy, especially in those with younger age and higher body mass index.

    Article  PubMed  Google Scholar 

  134. Hollinger P, Khatami R, Gugger M, Hess CW, Bassetti CL. Epilepsy and obstructive sleep apnea. Eur Neurol. 2006;55:74–9.

    Article  PubMed  Google Scholar 

  135. Byars AW, Byars KC, Johnson CS, et al. The relationship between sleep problems and neuropsychological functioning in children with first recognized seizures. Epilepsy Behav. 2008;13:607–13.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Lopez MR, Cheng JY, Kanner AM, Carvalho DZ, Diamond JA, Wallace DM. Insomnia symptoms in South Florida military veterans with epilepsy. Epilepsy Behav. 2013;27:159–64.

    Article  CAS  PubMed  Google Scholar 

  137. Goldberg-Stern H, Oren H, Peled N, Garty BZ. Effect of melatonin on seizure frequency in intractable epilepsy: a pilot study. J Child Neurol. 2012;27:1524–8. In this study, treatment with melatonin decreased frequency of diurnal seizures in children with drug resistant epilepsy. However, maximal number of seizures, sleep parameters and behavior remained unchanged.

    Article  PubMed  Google Scholar 

  138. Jain SV, Horn PS, Simakajornboon N, et al. Melatonin improves sleep in children with epilepsy: a randomized, double-blind, crossover study. Sleep Med. 2015;16:637–44. In this study, melatonin showed efficacy to decrease sleep latency in 9 children with epilepsy. No significant effects on seizure frequency were seen.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jain SV, Glauser TA. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: an evidence-based review of objective sleep metrics. Epilepsia. 2014;55:26–37.

    Article  CAS  PubMed  Google Scholar 

  140. Jain SV, Kothare SV. Sleep and epilepsy. Semin Pediatr Neurol. 2015;22:86–92.

    Article  PubMed  Google Scholar 

  141. Parhizgar F, Nugent K, Raj R. Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. J Clin Sleep Med. 2011;7:401–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Carreño MD, PhD.

Ethics declarations

Conflict of Interest

Santiago Fernández declares no conflict of interest.

Mar Carreño reports grants and personal fees from UCB Pharma and Eisai and personal fees from Esteve and Bial Pharmaceutical.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreño, M., Fernández, S. Sleep-Related Epilepsy. Curr Treat Options Neurol 18, 23 (2016). https://doi.org/10.1007/s11940-016-0402-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-016-0402-9

Keywords

Navigation