Skip to main content

Advertisement

Log in

Helminth/Parasite Treatment of Multiple Sclerosis

  • MULTIPLE SCLEROSIS AND RELATED DISORDERS (PN RISKIND, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Epidemiological studies suggest that autoimmune diseases, such as multiple sclerosis (MS), are less frequent in individuals who are helminth carriers. This observation has been tested in murine models of colitis, MS, type 1 diabetes and asthma. In each case, mice colonized with helminths show protection from disease. This apparent down-modulation of inflammatory response resulting from helminth infection has triggered interest in exploring the potential clinical efficacy of controlled helminth infection in patients suffering from autoimmune diseases. To date, clinical trials using helminth therapy (Trichura suis ova [TSO] or Necator americanus larvae) in MS have been small, safety-oriented trials of short duration, attempting to reproduce and confirm epidemiological and experimental data. Thus far, no adverse events related to therapeutic helminth infection have been observed. Nonetheless, there is a clear need for caution when considering such approaches. Some preliminary clinical, magnetic resonance imaging and immunological outcomes using TSO have been encouraging. Nevertheless, results should be interpreted with caution as the number of individuals studied was small and duration of follow up limited. Longer studies, monitoring safety and objective outcome measures are necessary to assess this novel therapeutic strategy in a more definitive fashion. An alternative approach to use of live helminth infections might arise from identification of helminth-derived immunomodulatory molecules mimicking the protective effects of parasite infection, i.e. capable of altering immune responses and, therefore, the course of autoimmune diseases. Although positive results from administering parasite products in mouse models of autoimmunity have been reported, much remains to be explored before the field can move from experimental animal models to application in clinical practice. To the best of my knowledge, parasite-derived molecules have not yet been administered as treatment for any autoimmune disease in humans. At this time, it is strongly recommended that live helminth or ova parasites be administered only to individuals participating in strictly monitored, controlled clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McFarland H, Martin R. Multiple Sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8:913–9.

    Article  CAS  PubMed  Google Scholar 

  2. Marrie RA. Environmental risk factors in multiple sclerosis. Lancet Neurol. 2004;3:709–18.

    Article  PubMed  Google Scholar 

  3. Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL. The genetics of multiple sclerosis: SNP to pathways to pathogenesis. Nat Rev Genet. 2008;9:516–26.

    Article  CAS  PubMed  Google Scholar 

  4. Gourraud PA, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis: an up-to-date review. Immunol Rev. 2012;248:87–103.

    Article  PubMed  Google Scholar 

  5. Ebers GC, Bulman DE, Sadovnik AD, Paty DW, Warren S, Hader W, et al. A population-based study of multiple sclerosis in twins. N Engl J Med. 1986;315:1638–42.

    Article  CAS  PubMed  Google Scholar 

  6. Rosati G. The prevalence of multiple sclerosis in the world: an update. Neurol Sci. 2011;22:117–39.

    Article  Google Scholar 

  7. Alter M, Kahana E, Lowenson R. Migration and risk of multiple sclerosis. Neurology. 1978;28:1089–93.

    Article  CAS  PubMed  Google Scholar 

  8. Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013;13 Suppl 12:3–9.

    Article  PubMed  Google Scholar 

  9. Christen U, von Herrath MG. Infections and autoimmunity-good or bad? J Immunol. 2005;174:7481–6.

    Article  CAS  PubMed  Google Scholar 

  10. Correale J, Fiol M, Gilmore W. The risk of relapses in multiple sclerosis during systemic infections. Neurology. 2006;67:652–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20.

    Article  PubMed  Google Scholar 

  12. Leibowitz U, Atanovsky A, Medalie JM, Smith HA, Halpern L, Alter M. Epidemiological study of multiple Sclerosis in Israel. II. Multiple sclerosis and the level of sanitation. J Neurol Nurosurg Psychiatry. 1966;29:60–8.

    Article  CAS  Google Scholar 

  13. Fleming JO, Cook TD. Multiple sclerosis and the hygiene hypothesis. Neurology. 2006;67:2085–6.

    Article  PubMed  Google Scholar 

  14. van den Bigeelar AH, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YC, Souverijn JH, et al. Long-term treatment of intestinal helminthes increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis. 2004;189:892–900.

    Article  Google Scholar 

  15. Correale J, Farez M. The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol. 2011;233:6–11.This paper clearly showed that helminths were indeed contributing to improve symptoms in MS patients, as clearance of parasites resulted in increased.

    Article  CAS  PubMed  Google Scholar 

  16. McSorley HJ, Maizels RM. Helminth Infections and host immune regulation. Clin Microbiol Rev. 2012;25:585–608.This is an excellent review documenting how helminth infections modulate immune responses of the host, and describing the development of therapeutic possibilities from the study of helminth infections severity of symptoms.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maizels RM, Hewitson JP, Smith KA. Susceptibility and immunity to helminth parasites. Curr Opin Immunol. 2012;24:459–66.This paper describes the orchestration of different immunological pathways involved in susceptibility and immunity to helminth parasites.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Maizels RM, Yazdanbakhsh M. T-cell regulation in helminth parasite infections:implications for inflammatory diseases. Chem Immunol Allergy. 2008;94:112–23.

    Article  CAS  PubMed  Google Scholar 

  19. Koyasu S, Moro K, Tanabe M, Takeuchi T. Natural helper cells: a new player in the innate response against helminth infection. Adv Immunol. 2010;108:21–44.

    Article  CAS  PubMed  Google Scholar 

  20. Saenz SA, Siracusa MC, Perrigoue SP, Urban Jr JF, Tocker JE, Budelsky AL, et al. IL-25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature. 2010;464:1362–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Artis D, Grencis RK. The intestinal epithelium: sensors to effectors in nematode infection. Mucosal Immunol. 2008;1:252–64.

    Article  CAS  PubMed  Google Scholar 

  22. Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites and the hygiene hypothesis. Science. 2002;19:490–4.

    Article  Google Scholar 

  23. Pinelli E, Brandes S, Dormans J, Gremmer E, van Loveren H. Infection with the roudworn Toxocara canis leads to exacerbation of experimental allergic airway inflammation. Clin Exp Allergy. 2008;38:649–58.

    Article  CAS  PubMed  Google Scholar 

  24. Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE. Helminth parasites-masters of regulation. Immunol Rev. 2004;201:89–116.

    Article  CAS  PubMed  Google Scholar 

  25. Sartono E, Kruize YCM, KUrniawan-Atmadja A, Maizels RM, Yazdanbakhsh M. Depression of antigen-specific interleukin-5 and interferon-γ responses in human lymphatic filariasis as a function of clinical satus and age. J Infect Dis. 1997;175:1276–80.

    Article  CAS  PubMed  Google Scholar 

  26. Kurniawan A, Yazdanbakhsh M, van Ree R, Aalberse R, Selkirk ME, Partono F, et al. Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J Immunol. 1993;150:3941–50.

    CAS  PubMed  Google Scholar 

  27. Satoguina JS, Adjobimey T, Arndts K, Hoch J, Oldenburg J, Layland LE, et al. Tr1 and naturally occurring regulatory T cells induce IgG4 in B cells through GITR/GITR-L interaction, IL-10 and TGF-β. Eur J Immunol. 2008;38:3101–13.

    Article  CAS  PubMed  Google Scholar 

  28. La Flamme AC, Ruddenklau K, Bäckström BT. Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun. 2003;71:4996–5004.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sewell D, Qing Z, Reinke E, Elliot D, Weinstock J, Sandor M, et al. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol. 2003;15:59–69.

    Article  CAS  PubMed  Google Scholar 

  30. Walsh KP, Brady MT, Finlay CM, Boon L, Mills KH. Infection with a helminth parasite attenuates autoimmunity through TGF-beta-mediated suppression of Th17 and Th1 responses. J Immunol. 2009;183:1577–86.

    Article  CAS  PubMed  Google Scholar 

  31. Gruden-Movsesijan A, Illic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic L. Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic Trichinella spiralis infection in dark agouti rats. Parasite Immunol. 2010;32:450–9.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson MS, Taylor MD, O’Gorman MT, Balic A, Barr TA, Filbery K, et al. Helminth-induced CD19+CD23hi B cells modulate experimental allergic and autoimmune inflammation. Eur J Immunol. 2010;40:1682–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, et al. Schistosoma mansoni modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol. 2003;33:1439–49.

    Article  CAS  PubMed  Google Scholar 

  34. Osada Y, Shimizu S, Kumagai T, Yamada S, Kanazawa T. Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of por-inflammatory mediators. Int J Parasitol. 2009;39:457–64.

    Google Scholar 

  35. Elliott DE, Li J, Blum A, Metwali A, Qadir K, Urban JF, et al. Exposure to schistosome eggs portects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2003;284:G385–91.

    CAS  PubMed  Google Scholar 

  36. Khan WI, Blennerhasset PA, Varghese AK, Chowdhury SK, Omsted P, Deng Y, et al. Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun. 2002;70:5931–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kuijk LM, Klaver EJ, Kooij G, van der Pol SM, Heijnen P, Bruijns SC, et al. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol. 2012;51:210–8.

    Article  CAS  PubMed  Google Scholar 

  38. Chiuso-Minicucci F, VAN DB, Zorzella-Pezavento SF, Peres RS, Ishikawa LL, Rosa LC, et al. Experimental autoimmune encephalomyelitis evolution was not modified by multiple infections with Strongyloides venezuelensis. Parasite Immunol. 2011;33:303–8.

    Article  CAS  PubMed  Google Scholar 

  39. Reyes JL, Espinoza-Jimenens AF, Gonzalez MI, Verdin L, Terrazas LI. Taenia crassiceps infection abrogates experimentala utoimmune encephalomyelitis. Cell Immunol. 2011;267:77–87.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Z, Nagano I, Asano K, Takahashi Y. Infection of non-encapsualted species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. Parasitol Res. 2010;107:1173–88.

    Article  PubMed  Google Scholar 

  41. Zheng X, Hu X, Zhou G, Lu Z, Qiu W, Bao J, et al. Soluble egg antigen from Schistosoma japonicum modulates the progression of chronic progressive experimental autoimmune encephalomyelitis via Th2-shift response. J Neuroimmunol. 2008;194:107–14.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu B, Trikudanathan S, Zozulya AL, Sandoval-Garcia C, Kennedy JK, Atochina O, et al. Immune modulation by Lacto-N-fucopentaose III in experimental autoimmune encephalomyelitis. Clin Immunol. 2012;142:351–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hasseldam H, Hansen CS, Johansen FF. Immunomodulatory effects of helminths and protozoa in multiple sclerosis and experimental autoimmune encephalomyelitis. Parasite Immunol. 2013;35:103–8.

    Google Scholar 

  44. Hunter MM, Wang A, Hirota CL, McKay DM. Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology. 2007;132:1320–30.

    Article  CAS  PubMed  Google Scholar 

  45. Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007;61:97–108.

    Article  CAS  PubMed  Google Scholar 

  46. Correale J, Farez M, Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol. 2008;64:187–99.

    Article  PubMed  Google Scholar 

  47. Bager P, Arnved J, Rønborg S, Wohlfahrt J, Poulsen LK, Westergaard T, et al. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol. 2010;125:123–30.

    Article  PubMed  Google Scholar 

  48. Summers RW, Elliot DE, Urban Jr JF, Thompson RA, Weinstrock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128:825–32.

    Article  PubMed  Google Scholar 

  49. Summers RW, Elliott DE, Urban Jr JF, Thompson R, Weinstrock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54:87–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MS, Cook TD, et al. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler. 2011;17:743–54.This paper describes the first human study using Trichura suis ova in relapsing remitting multiple sclerosis. Treatment was well-tolerated and favorable trends were observed in MRI and immunological assessments.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Daveson AJ, Jones DM, Gaze S, McSorley H, Clouston A, Pascoe A, et al. Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLos ONE. 2011;6:e17366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Graepel R, Leung G, Wang A, Villemaire M, Jirik FR, Sharkey KA, et al. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int J Parasitol. 2013;43:593–601.

    Article  PubMed  Google Scholar 

  53. Fleming JO. Helminth therapy in multiple sclerosis. Int J Parasitol. 2013;43:259–74.This is an excellent review on helminth therapy in multiple sclerosis

    Article  CAS  PubMed  Google Scholar 

  54. Tilp C, Kapur V, Loging W, Erb KJ. Prerequisites for the pharmaceutical industry to develop and commercialise helminthes and helminth-derived product therapy. Int J Parasitol. 2013;43:319–25.

    Article  PubMed  Google Scholar 

  55. Voldsgaard A, Bager P, Kapel C, Roepstorff A, Thamsborg S, Soendergaard H, et al. Trichuris suis ova therapy for relapsing Multiple Sclerosis- A safety study. Neurology. 2012;78:S30.005.

    Article  Google Scholar 

  56. Benzel F, Erdur H, Kholer S, Frentsch M, Thiel A, Harms L, et al. Immune monitoring of trichuris suis egg therapy in multiple sclerosis patients. J Helminthol. 2012;86:339–47.

    Article  CAS  PubMed  Google Scholar 

  57. Fleming J, Isaak A, Hardin LV, Huston J, Boland J, Broman AT, et al. Temporal changes in MRI activity, inflammation, immunomodualtion and gene expression in relapsing-remitting multiple sclerosis subjects treated with helminth probiotic Trichuris suis. Neurology. 2012;78:S30.004.

    Google Scholar 

  58. Rosche B, Wernecke KD, Ohlaraun S, Dörr JM, Paul F. Trichuris suis ova in relapsing-remitting multiple sclerosis and clinically isolated syndrome (TRIONS): study protocol for a randomized controlled trial. Trials. 2013;14:112. doi:10.1186/1745-6215-14-112.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Mortimer K, Brown A, Feary J, Jagger C, Lewis S, Antoniak M, et al. Dose.ranging study for trials of therapeutic infection with Necator americanus in humans. Am J Trop Med Hyg. 2006;75:914–20.

    CAS  PubMed  Google Scholar 

  60. Elias D, Akuffo H, Pawlowski A, Haile M, Schön T, Britton S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine. 2005;23:1326–34.

    Article  CAS  PubMed  Google Scholar 

  61. Cruz-Chan JV, Rosado-Vallado M, Dumonteil E. Malaria vaccine efficacy: overcoming the helminth hurdle. Exp Rev Vaccines. 2010;9:707–11.

    Article  CAS  Google Scholar 

  62. Sabin EA, Araujo MI, Carvalho EM, Pearce EJ. Impairment of tetanus toxoid-specific Th1-like immune responses in human infected with Schistosoma mansoni. J Infect Dis. 1996;173:269–72.

    Article  CAS  PubMed  Google Scholar 

  63. Bassily S, Hyams N, El-Ghorab M, Mansour MM, El-Masry NA, Dunn MA. Immunogenicity of hepatitis B vaccine in patients infected with Schistosoma mansoni. Am J Trop Med Hyg. 1987;36:549–53.

    CAS  PubMed  Google Scholar 

  64. Shin J, Gardiner GW, Deitel W, Kandel G. Does whipworm increase the pathogenicity of Campylobacter jejuni? A clinical correlate of an experimental observation. Can J Gastroenterol. 2004;18:175–7.

    PubMed  Google Scholar 

  65. Mansfield LS, Gauthier DT, Abner SR, Jones KM, Wilder SR, Urban JF. Enhancement of disease and pathology by synergy of Trichuris suis and Campylobacter jejuni in the colon of immunologically naive swine. Am J Trop Med Hyg. 2003;63:70–80.

    Google Scholar 

  66. Wolff MJ, Braodhurst MJ, Loke P. Helminthic therapy: improving mucosal barrier function. Trends Parasitol. 2012;28:187–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Reddy A, Fried B. An update on the use of helminths to treat Crohn’s and other autoimmune diseases. Parasitol Res. 2009;104:217–21.

    Article  PubMed  Google Scholar 

  68. Johnston MJG, MacDonald JA, McKay DM. Parasitic helminthes: a pharmacopeia of anti-inflammatory molecules. Parasitology. 2009;136:125–47.

    Google Scholar 

  69. Danilowiz-Luebert E, O’Regan NL, Steinfelder S, Hartmann S. Modulation of specific and allergy-related immune responses by helminths. J Biomed Biotechnol. 2011;2011:821578.

  70. Pineda MA, McGrath MA, Smith PC, Al-Riyami L, Rzepecka J, Gracie JA, et al. The parasitic helminth product ES-62 suppresses pathogenesis in collagen-induced arthritis by targeting the interleukin-17-producing cellular network at multiple sites. Arthritis Rheum. 2012;64:3168–78.

    Article  CAS  PubMed  Google Scholar 

  71. Imai S, Tezuka H, Fujita K. A factor inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice. Biochem Biophys Res Commun. 2001;286:1051–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jorge Correale is a board member of Merck-Serono Argentina, Merck-Serono LATAM, and Novartis Argentina. He has received reimbursement for developing educational presentations for Merck-Serono Argentina, Merck-Serono LATAM, Biogen-Idec Argentina, TEVA-Tuteur Argentina, and Novartis LATAM, as well as professional travel/accommodations stipends.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Correale MD.

Additional information

This article is part of the Topical Collection on Multiple Sclerosis and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correale, J. Helminth/Parasite Treatment of Multiple Sclerosis. Curr Treat Options Neurol 16, 296 (2014). https://doi.org/10.1007/s11940-014-0296-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-014-0296-3

Keywords

Navigation