Skip to main content

Advertisement

Log in

Updates in the Medical and Nutritional Management of Short Gut Syndrome

  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of Review

Intestinal adaptation is the main treatment goal in short bowel syndrome to control symptoms and improve health-related quality of life. This can be achieved in part through the use of medical therapies as well as parenteral and enteral nutrition, including oral dietary choices. This review will focus on dietary and medical management of short bowel syndrome and offer insights into novel nutritional and pharmacological approaches that may benefit patients.

Recent Findings

A balanced oral diet inclusive of whole plant-based foods may be beneficial in short bowel syndrome for reasons including alleviating symptoms, preventing disease-related complications, and optimizing the intestinal microbiome. Adjunctive medical therapies are often needed to improve symptoms, treat comorbid conditions, and reduce reliance on parenteral nutrition.

Summary

Though treatment must be tailored to individual anatomy and symptoms, newer dietary and pharmacologic approaches may be promising for short bowel patients. Future prospective studies are needed to further understand their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pironi L. Definitions of intestinal failure and the short bowel syndrome. Best Pract Res Clin Gastroenterol. 2016;30:173–85.

    Article  PubMed  Google Scholar 

  2. Parrish CR. The clinician’s guide to short bowel syndrome. The Clinician. 29.9 (2005): 67.

  3. Parrish CR, DiBaise JK. Short bowel syndrome in adults – part 2 nutrition therapy for short bowel syndrome in the adult patient. Pract Gastroenterol. 2014;41.

  4. Carlsson E, Bosaeus I, Nordgren S. Quality of life and concerns in patients with short bowel syndrome. Clin Nutr. 2003;22:445–52.

    Article  CAS  PubMed  Google Scholar 

  5. Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr. 2014;38:23S-31S.

    Article  PubMed  Google Scholar 

  6. Altmann GG. Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine. Am J Anat. 1972;133:391–400.

    Article  CAS  PubMed  Google Scholar 

  7. Jeppesen PB. Pharmacologic options for intestinal rehabilitation in patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2014;38:45S-52S.

    Article  CAS  PubMed  Google Scholar 

  8. Messing B, Crenn P, Beau P, Boutron-Ruault MC, Rambaud JC, Matuchansky C. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology. 1999;117:1043–50.

    Article  CAS  PubMed  Google Scholar 

  9. Clinical observations: beyond the prescription: optimizing the diet of patients with short bowel syndrome - Byrne - 2000 - Nutrition in Clinical Practice - Wiley Online Library [Internet]. [cited 2018 Jul 17]. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1177/088453360001500606

  10. Menge H, Gräfe M, Lorenz-Meyer H, Riecken EO. The influence of food intake on the development of structural and functional adaptation following ileal resection in the rat. Gut. 1975;16:468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neelis EG, Olieman JF, Hulst JM, de Koning BAE, Wijnen RMH, Rings EHHM. Promoting intestinal adaptation by nutrition and medication. Best Pract Res Clin Gastroenterol. 2016;30:249–61.

    Article  CAS  PubMed  Google Scholar 

  12. Parrish CR, DiBaise JK. Managing the adult patient with short bowel syndrome. Gastroenterol Hepatol (N Y). 2017;13:600–8.

    PubMed  Google Scholar 

  13. Matarese LE. Nutrition and fluid optimization for patients with short bowel syndrome. J Parenter Enter Nutr. 2013;37:161–70.

    Article  CAS  Google Scholar 

  14. Nightingale J, Woodward JM. Guidelines for management of patients with a short bowel. Gut. 2006;55:iv1-12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. •• Pironi L, Raschi E, Sasdelli AS. The safety of available treatment options for short bowel syndrome and unmet needs Expert Opinion on Drug Safety. Taylor & Francis. 2021;20:1501–13. This review highlights emerging medications for the use of short bowel syndrome but acknowledges that their long-term efficacy as well as safety profile remains unclear

    CAS  Google Scholar 

  16. Thompson WG, Wrathell E. The relation between ileal resection and vitamin B12 absorption. Can J Surg. 1977;20:461–4.

    CAS  PubMed  Google Scholar 

  17. Duerksen DR, Fallows G, Bernstein CN. Vitamin B12 malabsorption in patients with limited ileal resection. Nutrition. 2006;22:1210–3.

    Article  CAS  PubMed  Google Scholar 

  18. Filipsson S, Hultén L, Lindstedt G. Malabsorption of fat and vitamin B12 before and after intestinal resection for Crohn’s disease. Scand J Gastroenterol. 1978;13:529–36.

    Article  CAS  PubMed  Google Scholar 

  19. The role of anatomic factors in nutritional autonomy after extensive small bowel resection - Carbonnel - 1996 - Journal of Parenteral and Enteral Nutrition - Wiley Online Library [Internet]. [cited 2018 Jul 17]. Available from: https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1177/0148607196020004275

  20. Tappenden KA. Pathophysiology of short bowel syndrome. J Parenter Enter Nutr. 2014;38:14S-22S.

    Article  CAS  Google Scholar 

  21. Nightingale JM, Lennard-Jones JE, Walker ER, Farthing MJ. Jejunal efflux in short bowel syndrome. Lancet. 1990;336:765–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nightingale JM, Lennard-Jones JE, Gertner DJ, Wood SR, Bartram CI. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut. 1992;33:1493–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seetharam P, Rodrigues G. Short bowel syndrome: a review of management options. Saudi J Gastroenterol. 2011;17:229–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nightingale JMD. Management of patients with a short bowel. World J Gastroenterol. 2001;7:741–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woolf GM, Miller C, Kurian R, Jeejeebhoy KN. Nutritional absorption in short bowel syndrome Evaluation of fluid, calorie, and divalent cation requirements. Dig Dis Sci. 1987;32:8–15.

    Article  CAS  PubMed  Google Scholar 

  26. Aggarwal L, Sattavan S, Lal R, Sharma D, Borgharia S, Shrivastava N, et al. Short bowel syndrome: an uncommon clinical entity and a therapeutic challenge—our experience and review of literature. Indian J Surg. 2017;79:349–53.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ. 2018;360:k322.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Santarelli RL, Pierre F, Corpet DE. Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence. Nutr Cancer. 2008;60:131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benarba B. Red and processed meat and risk of colorectal cancer: an update. EXCLI J. 2018;17:792–7.

    PubMed  PubMed Central  Google Scholar 

  30. Ferretti F, Mariani M. Simple vs. complex carbohydrate dietary patterns and the global overweight and obesity pandemic. Int J Environ Res Public Health [Internet]. 2017 [cited 2019 Apr 3];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664675/

  31. Grooms KN, Ommerborn MJ, Pham DQ, Djousse L, Clark CR. Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999–2010. Am J Med [Internet]. 2013 [cited 2019 Jan 22];126. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865784/

  32. Lie L, Brown L, Forrester TE, Plange-Rhule J, Bovet P, Lambert EV, et al. The association of dietary fiber intake with cardiometabolic risk in four countries across the epidemiologic transition. Nutrients. 2018;10.

  33. Threapleton DE, Greenwood DC, Evans CEL, Cleghorn CL, Nykjaer C, Woodhead C, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ning H, Van Horn L, Shay CM, Lloyd-Jones DM. Associations of dietary fiber intake with long-term predicted cardiovascular disease risk and C-reactive protein levels (from the National Health and Nutrition Examination Survey Data [2005-2010]). Am J Cardiol. 2014;113:287–91.

    Article  CAS  PubMed  Google Scholar 

  36. Wannamethee SG, Whincup PH, Thomas MC, Sattar N. Associations between dietary fiber and inflammation, hepatic function, and risk of type 2 diabetes in older men: potential mechanisms for the benefits of fiber on diabetes risk. Diabetes Care. 2009;32:1823–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park Y, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch Intern Med. 2011;171:1061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3:506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Noia J. Defining powerhouse fruits and vegetables: a nutrient density approach. Prev Chronic Dis [Internet]. 2014 [cited 2019 Aug 1];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049200/

  40. Marles RJ. Mineral nutrient composition of vegetables, fruits and grains: the context of reports of apparent historical declines. J Food Compos Anal. 2017;56:93–103.

    Article  CAS  Google Scholar 

  41. Song W, Derito CM, Liu MK, He X, Dong M, Liu RH. Cellular antioxidant activity of common vegetables. J Agric Food Chem. 2010;58:6621–9.

    Article  CAS  PubMed  Google Scholar 

  42. Steele EM, Baraldi LG, da Louzada MLC, Moubarac J-C, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open British Medical Journal Publishing Group. 2016;6:e009892.

    Google Scholar 

  43. Weaver CM, Dwyer J, Fulgoni VL, King JC, Leveille GA, MacDonald RS, et al. Processed foods: contributions to nutrition. Am J Clin Nutr. 2014;99:1525–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Belizário JE, Faintuch J. Microbiome and gut dysbiosis. Exp Suppl. 2018;109:459–76.

    PubMed  Google Scholar 

  45. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22:1137–50.

    Article  PubMed  Google Scholar 

  46. Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J. The fecal microbiome in pediatric patients with short bowel syndrome. J Parenter Enter Nutr. 2016;40:1106–13.

    Article  CAS  Google Scholar 

  47. Neelis E, de Koning B, Rings E, Wijnen R, Nichols B, Hulst J, et al. The gut microbiome in patients with intestinal failure: current evidence and implications for clinical practice. JPEN J Parenter Enteral Nutr. 2019;43:194–205.

    Article  PubMed  Google Scholar 

  48. Zeichner SL, Mongodin EF, Hittle L, Huang S-H, Torres C. The bacterial communities of the small intestine and stool in children with short bowel syndrome. PLOS ONE Publ Lib Sci. 2019;14:e0215351.

    Article  CAS  Google Scholar 

  49. •• Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr [Internet]. 2019 [cited 2020 Oct 16];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478664/. This review describes the impact of a plant-predominant diets on the gut microbiota and highlights how certain components from these foods including fiber, polyphenols, and short-chain fatty acids are critical for optimal intestinal health.

  50. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature Nature Publishing Group. 2014;505:559–63.

    CAS  Google Scholar 

  51. Kles KA, Chang EB. Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology. 2006;130:S100-105.

    Article  CAS  PubMed  Google Scholar 

  52. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets - Bartholome - 2004 - Journal of Parenteral and Enteral Nutrition - Wiley Online Library [Internet]. [cited 2021 Dec 27]. Available from: https://aspenjournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1177/0148607104028004210?casa_token=gk6p1KPqfk0AAAAA:HhFCGz7dvOWnQlu6ymMSALwNr5B6JQ-xVygYUDRKXpFsc4tbaQDCOznmoAsX31JL2pKcipQg1XFCtQPc

  53. Tappenden KA, Albin DM, Bartholome AL, Mangian HF. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J Nutr. 2003;133:3717–20.

    Article  CAS  PubMed  Google Scholar 

  54. Jeppesen PB, Hartmann B, Thulesen J, Graff J, Lohmann J, Hansen BS, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120:806–15.

    Article  CAS  PubMed  Google Scholar 

  55. Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2004;286:G964-972.

    Article  CAS  PubMed  Google Scholar 

  56. Washizawa N, Gu LH, Gu L, Openo KP, Jones DP, Ziegler TR. Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr. 2004;28:399–409.

    Article  CAS  PubMed  Google Scholar 

  57. Martin GR, Wallace LE, Hartmann B, Holst JJ, Demchyshyn L, Toney K, et al. Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2005;288:G431-438.

    Article  CAS  PubMed  Google Scholar 

  58. Venkatraman A, Ramakrishna BS, Shaji RV, Kumar NSN, Pulimood A, Patra S. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-κB. American Journal of Physiology-Gastrointestinal and Liver Physiology. American Physiological Society. 2003;285:G177-84.

    CAS  Google Scholar 

  59. Pacheco RG, Esposito CC, Müller LC, Castelo-Branco MT, Quintella LP, Chagas VLA, et al. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis. World J Gastroenterol. 2012;18:4278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dolan R, Chey WD, Eswaran S. The role of diet in the management of irritable bowel syndrome: a focus on FODMAPs. Expert Rev Gastroenterol Hepatol. 2018;12:607–15.

    Article  CAS  PubMed  Google Scholar 

  61. Hill P, Muir JG, Gibson PR. Controversies and recent developments of the low-FODMAP diet. Gastroenterol Hepatol (N Y). 2017;13:36–45.

    PubMed  Google Scholar 

  62. Staudacher HM, Whelan K. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut. 2017;66:1517–27.

    Article  CAS  PubMed  Google Scholar 

  63. Marteau P, Messing B, Arrigoni E, Briet F, Flourié B, Morin MC, et al. Do patients with short-bowel syndrome need a lactose-free diet? Nutrition. 1997;13:13–6.

    Article  CAS  PubMed  Google Scholar 

  64. Arrigoni E, Marteau P, Briet F, Pochart P, Rambaud JC, Messing B. Tolerance and absorption of lactose from milk and yogurt during short-bowel syndrome in humans. Am J Clin Nutr. 1994;60:926–9.

    Article  CAS  PubMed  Google Scholar 

  65. Karkeck JM. Lactose and other intake prohibitions in small-bowel syndrome. J Am Diet Assoc. 1999;99:529.

    Article  CAS  PubMed  Google Scholar 

  66. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database of Systematic Reviews [Internet]. John Wiley & Sons, Ltd; 2020 [cited 2021 Dec 27]; Available from: https://www.cochranelibrary.com/cdsr/doi/https://doi.org/10.1002/14651858.CD011737.pub3/full

  67. Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB, Jakobsen MU, et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr. 2011;93:684–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A, et al. Dietary fat intake and development of specific breast cancer subtypes. JNCI: J Natl Cancer Instit. 2014;106:dju068.

    Article  Google Scholar 

  69. Lal S, Pironi L, Wanten G, Arends J, Bozzetti F, Cuerda C, et al. Clinical approach to the management of intestinal failure associated liver disease (IFALD) in adults: a position paper from the Home Artificial Nutrition and Chronic Intestinal Failure Special Interest Group of ESPEN. Clin Nutr. 2018;37:1794–7.

    Article  PubMed  Google Scholar 

  70. Cavicchi M, Beau P, Crenn P, Degott C, Messing B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med. 2000;132:525–32.

    Article  CAS  PubMed  Google Scholar 

  71. Parker HM, Johnson NA, Burdon CA, Cohn JS, O’Connor HT, George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;56:944–51.

    Article  CAS  PubMed  Google Scholar 

  72. Scorletti E, Byrne CD. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr. 2013;33:231–48.

    Article  CAS  PubMed  Google Scholar 

  73. He X-X, Wu X-L, Chen R-P, Chen C, Liu X-G, Wu B-J, et al. Effectiveness of omega-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. PLOS ONE Publ Lib Sci. 2016;11:e0162368.

    Article  Google Scholar 

  74. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New Engl J Med Massachusetts Med Soc. 2019;380:11–22.

    Article  CAS  Google Scholar 

  75. Mozaffarian D, Wu JHY. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67.

    Article  CAS  PubMed  Google Scholar 

  76. Watson H, Mitra S, Croden FC, Taylor M, Wood HM, Perry SL, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2018;67:1974–83.

    Article  CAS  PubMed  Google Scholar 

  77. Jeppesen PB, Mortensen PB. The influence of a preserved colon on the absorption of medium chain fat in patients with small bowel resection. Gut. 1998;43:478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shah ND, Limketkai BN. The use of medium-chain triglycerides in gastrointestinal disorders. Pract Gastroenterol. 2017;160:20–25.

  79. Ksiazyk J, Piena M, Kierkus J, Lyszkowska M. Hydrolyzed versus nonhydrolyzed protein diet in short bowel syndrome in children. J Pediatr Gastroenterol Nutr. 2002;35:615–8.

    Article  CAS  PubMed  Google Scholar 

  80. Richter CK, Skulas-Ray AC, Champagne CM, Kris-Etherton PM. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?12. Adv Nutr. 2015;6:712–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180:1173–84.

    Article  CAS  PubMed  Google Scholar 

  82. Tharrey M, Mariotti F, Mashchak A, Barbillon P, Delattre M, Fraser GE. Patterns of plant and animal protein intake are strongly associated with cardiovascular mortality: the Adventist Health Study-2 cohort. Int J Epidemiol [Internet]. [cited 2018 Apr 8]; Available from: https://academic.oup.com/ije/advance-article/doi/https://doi.org/10.1093/ije/dyy030/4924399

  83. Chalvon-Demersay T, Azzout-Marniche D, Arfsten J, Egli L, Gaudichon C, Karagounis LG, et al. A systematic review of the effects of plant compared with animal protein sources on features of metabolic syndrome. J Nutr. 2017;147:281–92.

    CAS  PubMed  Google Scholar 

  84. Lopez-Legarrea P, de la Iglesia R, Abete I, Navas-Carretero S, Martinez JA, Zulet MA. The protein type within a hypocaloric diet affects obesity-related inflammation: the RESMENA project. Nutrition. 2014;30:424–9.

    Article  CAS  PubMed  Google Scholar 

  85. van Nielen M, Feskens EJM, Mensink M, Sluijs I, Molina E, Amiano P, et al. Dietary protein intake and incidence of type 2 diabetes in Europe: the EPIC-InterAct case-cohort study. Diabetes Care. 2014;37:1854–62.

    Article  PubMed  Google Scholar 

  86. Virtanen HEK, Voutilainen S, Koskinen TT, Mursu J, Kokko P, Ylilauri MPT, et al. Dietary proteins and protein sources and risk of death: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2019;109:1462–71.

    Article  PubMed  Google Scholar 

  87. Campbell TC, Parpia B, Chen J. Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China Study. American Journal of Cardiology Elsevier. 1998;82:18–21.

    Article  Google Scholar 

  88. Zeisel SH, Mar M-H, Howe JC, Holden JM. Concentrations of choline-containing compounds and betaine in common foods. J Nutr. 2003;133:1302–7.

    Article  CAS  PubMed  Google Scholar 

  89. Ufnal M, Zadlo A, Ostaszewski R. TMAO: a small molecule of great expectations. Nutrition. 2015;31:1317–23.

    Article  CAS  PubMed  Google Scholar 

  90. Xu R, Wang Q, Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics. 2015;16:S4.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S, et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes © Georg Thieme Verlag KG. 2016;124:251–6.

    Article  CAS  Google Scholar 

  92. Tang WHW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448–55.

    Article  CAS  PubMed  Google Scholar 

  93. Park JE, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019;29:513–7.

    Article  CAS  PubMed  Google Scholar 

  94. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10:1398.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 2018;3:e99096.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zelber-Sagi S, Ivancovsky-Wajcman D, Fliss Isakov N, Webb M, Orenstein D, Shibolet O, et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol. 2018;68:1239–46.

    Article  CAS  PubMed  Google Scholar 

  97. Freedman ND, Cross AJ, McGlynn KA, Abnet CC, Park Y, Hollenbeck AR, et al. Association of meat and fat intake with liver disease and hepatocellular carcinoma in the NIH-AARP cohort. J Natl Cancer Inst. 2010;102:1354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mirmiran P, Yuzbashian E, Aghayan M, Mahdavi M, Asghari G, Azizi F. A prospective study of dietary meat intake and risk of incident chronic kidney disease. J Ren Nutr. 2020;30:111–8.

    Article  CAS  PubMed  Google Scholar 

  99. Mafra D, Borges NA, de Cardozo LFMF, Anjos JS, Black AP, Moraes C, et al. Red meat intake in chronic kidney disease patients: two sides of the coin. Nutrition. 2018;46:26–32.

    Article  CAS  PubMed  Google Scholar 

  100. Battaglia Richi E, Baumer B, Conrad B, Darioli R, Schmid A, Keller U. Health risks associated with meat consumption: a review of epidemiological studies. Int J Vitam Nutr Res. 2015;85:70–8.

    Article  PubMed  Google Scholar 

  101. Parreiras-E-Silva LT, de Araújo IM, Elias J, Nogueira-Barbosa MH, Suen VMM, Marchini JS, et al. Osteoporosis and hepatic steatosis: 2 closely related complications in short-bowel syndrome. JPEN J Parenter Enteral Nutr.  2020;44.7:1271–1279.

  102. Zhang M, Hou Z-K, Huang Z-B, Chen X-L, Liu F-B. Dietary and lifestyle factors related to gastroesophageal reflux disease: a systematic review. Ther Clin Risk Manag. 2021;17:305–23.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Di Ciaula A, Garruti G, Frühbeck G, De Angelis M, de Bari O, Wang DQ-H, et al. The role of diet in the pathogenesis of cholesterol gallstones. Curr Med Chem. 2019;26:3620–38.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chang C-M, Chiu THT, Chang C-C, Lin M-N, Lin C-L. Plant-based diet, cholesterol, and risk of gallstone disease: a prospective study. Nutrients. 2019;11:E335.

    Article  Google Scholar 

  105. Akhlaghi M, Ghasemi-Nasab M, Riasatian M. Mediterranean diet for patients with non-alcoholic fatty liver disease, a systematic review and meta-analysis of observational and clinical investigations. J Diabetes Metab Disord. 2020;19:575–84.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fraser A, Abel R, Lawlor DA, Fraser D, Elhayany A. A modified Mediterranean diet is associated with the greatest reduction in alanine aminotransferase levels in obese type 2 diabetes patients: results of a quasi-randomised controlled trial. Diabetologia. 2008;51:1616–22.

    Article  CAS  PubMed  Google Scholar 

  107. Anania C, Perla FM, Olivero F, Pacifico L, Chiesa C. Mediterranean diet and nonalcoholic fatty liver disease. World J Gastroenterol. 2018;24:2083–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. Journal of Hepatology Elsevier. 2017;67:829–46.

    Article  Google Scholar 

  109. Ryan MC, Itsiopoulos C, Thodis T, Ward G, Trost N, Hofferberth S, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59:138–43.

    Article  CAS  PubMed  Google Scholar 

  110. Esposito K, Kastorini C-M, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials Metabolic syndrome and related disorders. Mary Ann Liebert, Inc publishers. 2010;9:1–12.

    Google Scholar 

  111. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New Engl J Med Massachusetts Med Soc. 2018;378:e34.

    Article  CAS  Google Scholar 

  112. Kastorini C-M, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57:1299–313.

    Article  CAS  PubMed  Google Scholar 

  113. Mancini JG, Filion KB, Atallah R, Eisenberg MJ. Systematic review of the Mediterranean diet for long-term weight loss. Am J Med. 2016;129:407-415.e4.

    Article  PubMed  Google Scholar 

  114. Martínez-González MA, Sánchez-Tainta A, Corella D, Salas-Salvadó J, Ros E, Arós F, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100(Suppl 1):320S-S328.

    Article  PubMed  Google Scholar 

  115. Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol. 2013;74:580–91.

    Article  PubMed  Google Scholar 

  116. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ [Internet]. British Medical Journal Publishing Group; 2008 [cited 2020 Mar 9];337. Available from: https://www.bmj.com/content/337/bmj.a1344

  117. Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229–38.

    Article  PubMed  Google Scholar 

  118. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. - PubMed - NCBI [Internet]. [cited 2020 Feb 8]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16963247/

  119. Adherence to Mediterranean diet and health status: meta-analysis | The BMJ [Internet]. [cited 2020 Mar 9]. Available from: https://www.bmj.com/content/337/bmj.a1344.long

  120. Sundaram A, Koutkia P, Apovian CM. Nutritional management of short bowel syndrome in adults. J Clin Gastroenterol. 2002;34:207–20.

    Article  CAS  PubMed  Google Scholar 

  121. Yang CJ, Duro D, Zurakowski D, Lee M, Jaksic T, Duggan C. High prevalence of multiple micronutrient deficiencies in children with intestinal failure: a longitudinal study. J Pediatr. 2011;159:39-44.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dibaise JK, Young RJ, Vanderhoof JA. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin Gastroenterol Hepatol. 2006;4:11–20.

    Article  PubMed  Google Scholar 

  123. Vanderhoof JA, Young RJ, Murray N, Kaufman SS. Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. J Pediatr Gastroenterol Nutr. 1998;27:155–60.

    Article  CAS  PubMed  Google Scholar 

  124. Pawlak R, Parrott SJ, Raj S, Cullum-Dugan D, Lucus D. How prevalent is vitamin B(12) deficiency among vegetarians? Nutr Rev. 2013;71:110–7.

    Article  PubMed  Google Scholar 

  125. Rizzo G, Laganà AS, Rapisarda AMC, La Ferrera GMG, Buscema M, Rossetti P, et al. Vitamin B12 among vegetarians: status, assessment and supplementation. Nutrients. 2016;8:767.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Johnson E, Vu L, Matarese LE. Bacteria, bones, and stones: managing complications of short bowel syndrome. Nutr Clin Pract. 2018;33:454–66.

    Article  CAS  PubMed  Google Scholar 

  127. Hashimoto S, Yamamoto R, Maoka T, Fukasawa Y, Koike T, Shigematsu T. A case of chronic calcium oxalate nephropathy due to short bowel syndrome and cholecystectomy. Case Rep Nephrol Dial. 2018;8:147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mitchell T, Kumar P, Reddy T, Wood KD, Knight J, Assimos DG, et al. Dietary oxalate and kidney stone formation. Am J Physiol Renal Physiol. 2019;316:F409–13.

    Article  PubMed  Google Scholar 

  129. Meyers WC, Jones RS. Hyperacidity and hypergastrinemia following extensive intestinal resection. World J Surg. 1979;3:539–44.

    Article  CAS  PubMed  Google Scholar 

  130. Straus E, Gerson CD, Yalow RS. Hypersecretion of gastrin associated with the short bowel syndrome. Gastroenterology. 1974;66:175–80.

    Article  CAS  PubMed  Google Scholar 

  131. Kato J, Sakamoto J, Teramukai S, Kojima H, Nakao A. A prospective within-patient comparison clinical trial on the effect of parenteral cimetidine for improvement of fluid secretion and electrolyte balance in patients with short bowel syndrome. Hepatogastroenterology. 2004;51:1742–6.

    PubMed  Google Scholar 

  132. Nightingale JM, Walker ER, Farthing MJ, Lennard-Jones JE. Effect of omeprazole on intestinal output in the short bowel syndrome. Aliment Pharmacol Ther. 1991;5:405–12.

    Article  CAS  PubMed  Google Scholar 

  133. Murphy JP, King DR, Dubois A. Treatment of gastric hypersecretion with cimetidine in the short-bowel syndrome. N Engl J Med Massachusetts Med Soc. 1979;300:80–1.

    Article  Google Scholar 

  134. Smith JL. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot. 2003;66:1292–303.

    Article  PubMed  Google Scholar 

  135. Tennant SM, Hartland EL, Phumoonna T, Lyras D, Rood JI, Robins-Browne RM, et al. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect Immun. 2008;76:639–45.

    Article  CAS  PubMed  Google Scholar 

  136. Kumpf VJ. Chapter 12 - Antidiarrheals, antisecretory agents, pancreatic enzymes. In: Corrigan ML, Roberts K, Steiger E, editors. Adult Short Bowel Syndrome [Internet]. Academic Press; 2019 [cited 2022 Sep 9]. p. 165–76. Available from: https://www.sciencedirect.com/science/article/pii/B9780128143308000123

  137. Bechtold ML, McClave SA, Palmer LB, Nguyen DL, Urben LM, Martindale RG, et al. The pharmacologic treatment of short bowel syndrome: new tricks and novel agents. Curr Gastroenterol Rep. 2014;16:392.

    Article  PubMed  Google Scholar 

  138. King RF, Norton T, Hill GL. A double-blind crossover study of the effect of loperamide hydrochloride and codeine phosphate on ileostomy output. Aust N Z J Surg. 1982;52:121–4.

    Article  CAS  PubMed  Google Scholar 

  139. Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124:1111–34.

    Article  PubMed  Google Scholar 

  140. Ladefoged K, Christensen KC, Hegnhøj J, Jarnum S. Effect of a long acting somatostatin analogue SMS 201–995 on jejunostomy effluents in patients with severe short bowel syndrome. Gut. 1989;30:943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nehra V, Camilleri M, Burton D, Oenning L, Kelly DG. An open trial of octreotide long-acting release in the management of short bowel syndrome. Am J Gastroenterol. 2001;96:1494–8.

    Article  CAS  PubMed  Google Scholar 

  142. Buchman AL, Fryer J, Wallin A, Ahn CW, Polensky S, Zaremba K. Clonidine reduces diarrhea and sodium loss in patients with proximal jejunostomy: a controlled study. JPEN J Parenter Enteral Nutr. 2006;30:487–91.

    Article  CAS  PubMed  Google Scholar 

  143. McDoniel K, Taylor B, Huey W, Eiden K, Everett S, Fleshman J, et al. Use of clonidine to decrease intestinal fluid losses in patients with high-output short-bowel syndrome. JPEN J Parenter Enteral Nutr. 2004;28:265–8.

    Article  PubMed  Google Scholar 

  144. Schmassmann A, Fehr HF, Locher J, Lillienau J, Schteingart CD, Rossi SS, et al. Cholylsarcosine, a new bile acid analogue: metabolism and effect on biliary secretion in humans. Gastroenterology. 1993;104:1171–81.

    Article  CAS  PubMed  Google Scholar 

  145. Heydorn S, Jeppesen PB, Mortensen PB. Bile acid replacement therapy with cholylsarcosine for short-bowel syndrome. Scand J Gastroenterol. 1999;34:818–23.

    Article  CAS  PubMed  Google Scholar 

  146. Fürst T, Bott C, Stein J, Dressman JB. Enteric-coated cholylsarcosine microgranules for the treatment of short bowel syndrome. J Pharm Pharmacol. 2005;57:53–60.

    Article  PubMed  Google Scholar 

  147. Pimentel M, Basseri B, Lezcano S, Low K, Lees-Kim V, Consantino T, et al. The efficacy of the GLP-1 agonist exenatide in the treatment of short bowel syndrome: 233. Off J Am College Gastroenterol | ACG. 2007;102:S201.

    Article  Google Scholar 

  148. Sigalet DL, Bawazir O, Martin GR, Wallace LE, Zaharko G, Miller A, et al. Glucagon-like peptide-2 induces a specific pattern of adaptation in remnant jejunum. Dig Dis Sci. 2006;51:1557–66.

    Article  CAS  PubMed  Google Scholar 

  149. Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O’keefe SJD, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143:1473-1481.e3.

    Article  CAS  PubMed  Google Scholar 

  150. Schwartz LK, O’Keefe SJD, Fujioka K, Gabe SM, Lamprecht G, Pape U-F, et al. Long-term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Transl Gastroenterol. 2016;7:e142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Iyer KR, Kunecki M, Boullata JI, Fujioka K, Joly F, Gabe S, et al. Independence from parenteral nutrition and intravenous fluid support during treatment with teduglutide among patients with intestinal failure associated with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2017;41:946–51.

    Article  CAS  PubMed  Google Scholar 

  152. Compher C, Gilroy R, Pertkiewicz M, Ziegler TR, Ratcliffe SJ, Joly F, et al. Maintenance of parenteral nutrition volume reduction, without weight loss, after stopping teduglutide in a subset of patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2011;35:603–9.

    Article  CAS  PubMed  Google Scholar 

  153. •• Naimi RM, Hvistendahl M, Enevoldsen LH, Madsen JL, Fuglsang S, Poulsen SS, et al. Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel syndrome: a randomised phase 2 trial. Lancet Gastroenterol Hepatol. 2019;4:354–63. Glepaglutide is a novel long-acting GLP-2 agonist that is well tolerated and may be an important therapeutic option for future patients.

    Article  PubMed  Google Scholar 

  154. Slim GM, Lansing M, Wizzard P, Nation PN, Wheeler SE, Brubaker PL, et al. Novel long-acting GLP-2 analogue, FE 203799 (apraglutide), enhances adaptation and linear intestinal growth in a neonatal piglet model of short bowel syndrome with total resection of the ileum. JPEN J Parenter Enteral Nutr. 2019;43:891–8.

    Article  CAS  PubMed  Google Scholar 

  155. Madsen KB, Askov-Hansen C, Naimi RM, Brandt CF, Hartmann B, Holst JJ, et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study Regul Pept. 2013;184:30–9.

    Article  CAS  PubMed  Google Scholar 

  156. • Reiner J, Berlin P, Held J, Thiery J, Skarbaliene J, Griffin J, et al. Dapiglutide, a novel dual GLP-1 and GLP-2 receptor agonist, attenuates intestinal insufficiency in a murine model of short bowel. JPEN J Parenter Enteral Nutr. 2022;46:1107–18. Dapiglutide is a promising new dual GLP agonist that can potentially target multiple mechanisms to improve intestinal adaptation and symptoms in short bowel patients.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception and design. The first draft of the manuscript was written by Steven Mathews, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Steven Nalonnil Mathews MD.

Ethics declarations

Conflict of Interest

Steven Nalonnil Mathews and Shilpa Ravella declare no competing interests.

Ethics Approval

This is a review article. Ethics approval is not applicable.

Consent to Participate

This is a review article. No subjects were consented.

Consent for Publication

This is a review article. No subjects were consented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathews, S.N., Ravella, S. Updates in the Medical and Nutritional Management of Short Gut Syndrome. Curr Treat Options Gastro 21, 185–203 (2023). https://doi.org/10.1007/s11938-023-00419-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-023-00419-z

Keywords

Navigation