Skip to main content
Log in

Role of Imaging in Improving Outcomes with Ablation

  • Arrhythmia (R Kabra, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to provide information about the role that cardiac magnetic resonance imaging (CMR) can play in guiding catheter ablation right from patient selection to creating better lesions to post-ablation follow-up.

Recent Findings

CMR can provide very important information of the scar and fibrotic substrate in the cardiac tissue. Cardiac substrate information from CMR plays a critical role in ventricular and atrial arrhythmia management. CMR can demonstrate the extent of acute edema and long-term scar formation from catheter ablation. All this information can lead to optimal targeting and lesion creation.

Summary

Understanding all the different aspects of CMR can provide clinical electrophysiologist with valuable information. This results in better managing arrhythmia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

  1. White JA, Fine NM, Gula L, Yee R, Skanes A, Klein G, et al. Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging. 2012;5(1):12–20. https://doi.org/10.1161/CIRCIMAGING.111.966085.

    Article  PubMed  Google Scholar 

  2. Dawson DK, Hawlisch K, Prescott G, Roussin I, Di Pietro E, Deac M, et al. Prognostic role of CMR in patients presenting with ventricular arrhythmias. JACC Cardiovasc Imaging. 2013;6:335–44.

    Article  Google Scholar 

  3. Andreu D, Penela D, Acosta J, Fernández-Armenta J, Perea RJ, Soto-Iglesias D, et al. Cardiac magnetic resonance-aided scar dechanneling: influence on acute and long-term outcomes. Heart Rhythm. 2017;14(8):1121–8. https://doi.org/10.1016/j.hrthm.2017.05.018.

    Article  PubMed  Google Scholar 

  4. Piers SR, Tao Q, de Riva SM, Siebelink HM, Schalij MJ, van der Geest RJ, et al. CMR-based identification of critical isthmus sites of ischemic and nonischemic ventricular tachycardia. JACC Cardiovasc Imaging. 2014;7(8):774–84. https://doi.org/10.1016/j.jcmg.2014.03.013.

    Article  PubMed  Google Scholar 

  5. Roguin A, Schwitter J, Vahlhaus C, Lombardi M, Brugada J, Vardas P, et al. Magnetic resonance imaging in individuals with cardiovascular implantable electronic devices. Europace. 2008;10:336–46. https://doi.org/10.1093/europace/eun021.

    Article  PubMed  Google Scholar 

  6. Nazarian S, Halperin HR. How to perform magnetic resonance imaging on patients with implantable cardiac arrhythmia devices. Heart Rhythm. 2009;6:138–43.

    Article  Google Scholar 

  7. Sommer T, Naehle CP, Yang A, Zeijlemaker V, Hackenbroch M, Schmiedel A, et al. Strategy for safe performance of extrathoracic magnetic resonance imaging at 1.5 tesla in the presence of cardiac pacemakers in non-pacemaker-dependent patients: a prospective study with 115 examinations. Circulation. 2006;114:1285–92.

    Article  Google Scholar 

  8. Nazarian S, Hansford R, Roguin A, Goldsher D, Zviman MM, Lardo AC, et al. A prospective evaluation of a protocol for magnetic resonance imaging of patients with implanted cardiac devices. Ann Intern Med. 2011;155:415–24. https://doi.org/10.7326/0003-4819-155-7-201110040-00004.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rashid S, Rapacchi S, Vaseghi M, Tung R, Shivkumar K, Finn JP, et al. Improved late gadolinium enhancement MR imaging for patients with implanted cardiac devices. Radiology. 2014;270:269–74.

    Article  Google Scholar 

  10. Ranjan R, McGann CJ, Jeong EK, Hong K, Kholmovski EG, Blauer J, et al. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: a feasibility study at 3 T. Europace. 2015;17(3):483–8. https://doi.org/10.1093/europace/euu263.

    Article  PubMed  Google Scholar 

  11. Do DH, Eyvazian V, Bayoneta AJ, Hu P, Finn JP, Bradfield JS, et al. Cardiac magnetic resonance imaging using wideband sequences in patients with nonconditional cardiac implanted electronic devices. Heart Rhythm. 2018;15(2):218–25. https://doi.org/10.1016/j.hrthm.2017.10.003.

    Article  PubMed  Google Scholar 

  12. Perea RJ, Ortiz-Perez JT, Sole M, Cibeira MT, de Caralt TM, Prat-Gonzalez S, et al. T1 mapping: characterisation of myocardial interstitial space. Insights Imaging. 2015;6(2):189–202. https://doi.org/10.1007/s13244-014-0366-9.

    Article  PubMed  Google Scholar 

  13. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6. https://doi.org/10.1002/mrm.20110.

    Article  PubMed  Google Scholar 

  14. Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26(4):1081–6. https://doi.org/10.1002/jmri.21119.

    Article  PubMed  Google Scholar 

  15. Ferreira VM, Piechnik SK, Dall'Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14(1):42. Published 2012 Jun 21. https://doi.org/10.1186/1532-429X-14-42.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5(6):596–603. https://doi.org/10.1016/j.jcmg.2012.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932–7. https://doi.org/10.1136/heartjnl-2012-303052.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6(4):488–97. https://doi.org/10.1016/j.jcmg.2012.11.013.

    Article  PubMed  Google Scholar 

  19. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(6):726–33. https://doi.org/10.1161/CIRCIMAGING.112.976738.

    Article  PubMed  Google Scholar 

  20. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6(4):475–84. https://doi.org/10.1016/j.jcmg.2012.08.019.

    Article  PubMed  Google Scholar 

  21. Sado DM, Maestrini V, Piechnik SK, Banypersad SM, White SK, Flett AS, et al. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging. 2015;41(6):1505–11. https://doi.org/10.1002/jmri.24727.

    Article  PubMed  Google Scholar 

  22. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6(3):392–8. https://doi.org/10.1161/CIRCIMAGING.112.000070.

    Article  PubMed  Google Scholar 

  23. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98(19):1436–41. https://doi.org/10.1136/heartjnl-2012-302346.

    Article  PubMed  Google Scholar 

  24. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126(10):1206–16.

    Article  Google Scholar 

  25. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119(13):1758–67.

    Article  Google Scholar 

  26. Badger TJ, Adjei-Poku YA, Burgon NS, Kalvaitis S, Shaaban A, Sommers DN, et al. Initial experience of assessing esophageal tissue injury and recovery using delayed-enhancement MRI after atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2009;2(6):620–5.

    Article  Google Scholar 

  27. Siebermair J, Kholmovski EG, Marrouche N. Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. JACC Clin Electrophysiol. 2017;3(8):791–802.

    Article  Google Scholar 

  28. Chubb H, Aziz S, Karim R, Sohns C, Razeghi O, Williams SE, et al. Optimization of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. J Cardiovasc Magn Reson. 2018;20(1):30.

    Article  Google Scholar 

  29. Kholmovski EG, Morris AK, Chelu MG. Cardiac MRI and fibrosis quantification. Card Electrophysiol Clin. 2019;11(3):537–49. https://doi.org/10.1016/j.ccep.2019.04.005.

    Article  PubMed  Google Scholar 

  30. Vijayakumar S, Kholmovski EG, Marrouche NF. Dependence of scar contrast in LGE images of left atrium on the time interval after contrast injection. J Cardiovasc Magn Reson. 2011;13(Suppl 1):P42.

    Article  Google Scholar 

  31. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498–506.

    Article  CAS  Google Scholar 

  32. Sramko M, Peichl P, Wichterle D, Tintera J, Weichet J, Maxian R, et al. Clinical value of assessment of left atrial late gadolinium enhancement in patients undergoing ablation of atrial fibrillation. Int J Cardiol. 2015;179:351–7. https://doi.org/10.1016/j.ijcard.2014.11.072.

    Article  PubMed  Google Scholar 

  33. Chubb H, Karim R, Roujol S, Nuñez-Garcia M, Williams SE, Whitaker J, et al. The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. J Cardiovasc Magn Reson. 2018;20(1):21. Published 2018 Mar 19. https://doi.org/10.1186/s12968-018-0438-y.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mukherjee RK, Costa CM, Neji R, Harrison JL, Sim I, Williams SE, et al. Evaluation of a real-time magnetic resonance imaging-guided electrophysiology system for structural and electrophysiological ventricular tachycardia substrate assessment. Europace. 2019;21(9):1432–41. https://doi.org/10.1093/europace/euz165.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chubb H, Williams SE, Whitaker J, Harrison JL, Razavi R, O'Neill M. Cardiac electrophysiology under MRI guidance: an emerging technology. Arrhythm Electrophysiol Rev. 2017;6(2):85–93. https://doi.org/10.15420/aer.2017.1.2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schmidt EJ, Mallozzi RP, Thiagalingam A, Holmvang G, d'Avila A, Guhde R, et al. Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ Arrhythm Electrophysiol. 2009;2(6):695–704. https://doi.org/10.1161/CIRCEP.109.882472.

    Article  PubMed  Google Scholar 

  37. Vergara GR, Vijayakumar S, Kholmovski EG, Blauer JJ, Guttman MA, Gloschat C, et al. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 tesla. Heart Rhythm. 2011;8(2):295–303. https://doi.org/10.1016/j.hrthm.2010.10.032.

    Article  PubMed  Google Scholar 

  38. Knowles BR, Caulfield D, Cooklin M, Rinaldi CA, Gill J, Bostock J, et al. 3-D visualization of acute RF ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans Biomed Eng. 2010;57(6):1467–75.

    Article  Google Scholar 

  39. Ranjan R, Kholmovski EG, Blauer J, Vijayakumar S, Volland NA, Salama ME, et al. Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythm Electrophysiol. 2012;5(6):1130–5. https://doi.org/10.1161/CIRCEP.112.973164.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ahrar K, Ahrar JU, Javadi S, Pan L, Milton DR, Wood CG, et al. Real-time magnetic resonance imaging-guided cryoablation of small renal tumors at 1.5 T. Investig Radiol. 2013;48:437–44.

    Article  Google Scholar 

  41. Bomers JG, Sedelaar JP, Barentsz JO, Futterer JJ. MRI-guided interventions for the treatment of prostate cancer. Am J Roentgenol. 2012;199:714–20.

    Article  Google Scholar 

  42. Kholmovski EG, Coulombe N, Silvernagel J, Angel N, Parker D, Macleod R, et al. Real-time MRI-guided cardiac cryo-ablation: a feasibility study. J Cardiovasc Electrophysiol. 2016;27(5):602–8. https://doi.org/10.1111/jce.12950.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lichter J, Kholmovski EG, Coulombe N, Ghafoori E, Kamali R, MacLeod R, et al. Real-time magnetic resonance imaging-guided cryoablation of the pulmonary veins with acute freeze-zone and chronic lesion assessment. Europace. 2019;21(1):154–62. https://doi.org/10.1093/europace/euy089.

    Article  PubMed  Google Scholar 

  44. Ghafoori E, Kholmovski EG, Thomas S, Silvernagel J, Angel N, Hu N, et al. Characterization of gadolinium contrast enhancement of radiofrequency ablation lesions in predicting edema and chronic lesion size. Circ Arrhythm Electrophysiol. 2017;10(11):e005599. https://doi.org/10.1161/CIRCEP.117.005599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parmar BR, Jarrett TR, Burgon NS, Kholmovski EG, Akoum NW, Hu N, et al. Comparison of left atrial area marked ablated in electroanatomical maps with scar in MRI. J Cardiovasc Electrophysiol. 2014;25:457–63.

    Article  Google Scholar 

  46. Ranjan R, Kato R, Zviman MM, Dickfeld TM, Roguin A, Berger RD, et al. Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ Arrhythm Electrophysiol. 2011;4:279–86.

    Article  Google Scholar 

  47. Parmar BR, Jarrett TR, Kholmovski EG, Hu N, Parker D, MacLeod RS, et al. Poor scar formation after ablation is associated with atrial fibrillation recurrence. J Interv Card Electrophysiol. 2015;44(3):247–56. https://doi.org/10.1007/s10840-015-0060-y.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yamashita K, Quang C, Schroeder JD, DiBella E, Han F, MacLeod R, et al. Distance between the left atrium and the vertebral body is predictive of esophageal movement in serial MR imaging. J Interv Card Electrophysiol. 2018;52(2):149–56. https://doi.org/10.1007/s10840-018-0348-9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reddy VY, Dukkipati SR, Neuzil P, Natale A, Albenque JP, Kautzner J, et al. Randomized, controlled trial of the safety and effectiveness of a contact force-sensing irrigated catheter for ablation of paroxysmal atrial fibrillation: results of the TactiCath Contact Force Ablation Catheter Study for Atrial Fibrillation (TOCCASTAR) study. Circulation. 2015;132:907–15.

    Article  Google Scholar 

  50. Chubb H, Lal K, Kiedrowicz R, Karim R, Williams SE, Harrison J, et al. The value of ablation parameter indices for predicting mature atrial scar formation in humans: an in vivo assessment using cardiac magnetic resonance imaging. J Cardiovasc Electrophysiol. 2019;30:67–77.

    Article  Google Scholar 

  51. Thomas S, Silvernagel J, Angel N, Kholmovski E, Ghafoori E, Hu N, et al. Higher contact force during radiofrequency ablation leads to a much larger increase in edema as compared to chronic lesion size. J Cardiovasc Electrophysiol. 2018;29(8):1143–9. https://doi.org/10.1111/jce.13636.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yamashita K, Kamali R, Kwan E, MacLeod RS, Dosdall DJ, Ranjan R. Effective ablation settings that predict chronic scar after left atrial ablation. JACC Clin Electrophysiol. 2020;6(2):143–52. https://doi.org/10.1016/j.jacep.2019.10.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan MD, PhD.

Ethics declarations

Conflict of Interest

Leenhapong Navaravong declares that he has no conflict of interest. Ravi Ranjan declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Arrhythmia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navaravong, L., Ranjan, R. Role of Imaging in Improving Outcomes with Ablation. Curr Treat Options Cardio Med 22, 28 (2020). https://doi.org/10.1007/s11936-020-00835-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00835-9

Keywords

Navigation