Skip to main content

Advertisement

Log in

Endovascular Treatment of Acute Ischemic Stroke

  • Cerebrovascular Disease and Stroke (S Silverman, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Endovascular thrombectomy (ET), the standard of treatment for emergent large vessel occlusion (ELVO) strokes, has been subject to rigorous efforts to further improve its usage and delivery for optimised patient outcomes. This review aims to provide an outline and discussion about the recently established and emerging recommendations regarding endovascular treatment of stroke.

Recent findings

The indications for ET have expanded continually, with perfusion imaging now enabling selection of patients presenting 6–24 h after last-known-well, and improved device and operator proficiency allowing treatment of M2-MCA occlusions and tandem occlusions. Further inclusion of paediatric patients and patients with larger infarct core or milder stroke symptoms for ET has been proposed; however, this remains unproven. This growing applicability is supported by more efficient systems of care, employing modern techniques such as telemedicine, mobile stroke units and helicopter medical services. Ongoing debate exists regarding thrombolytic agent, thrombectomy technique, anaesthesia method and the role of advanced neuroimaging, with upcoming RCTs expected to provide clarification.

Summary

The journey to further improving the efficacy of ET has advanced and diversified rapidly over recent years, involving improved patient selection, increased utility of advanced neuroimaging and ongoing device redevelopment, within the setting of more efficient, streamlined systems of care. This dynamic and ongoing influx of evidence-based refinements is key to further optimising outcomes for ELVO patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Stryker, Kalamazoo, MI, USA

  2. Penumbra Inc., Alameda, CA, USA

  3. Medtronic Neurovascular, MN, USA

  4. Stryker

  5. Both Penumbra, Alameda, California

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Katan M, Luft A. Global burden of stroke. Semin Neurol. 2018;38(2):208–11. https://doi.org/10.1055/s-0038-1649503.

    Article  PubMed  Google Scholar 

  2. Smith WS, Lev MH, English JD, Camargo EC, Chou M, Johnston SC, et al. Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke. 2009;40(12):3834–40. https://doi.org/10.1161/STROKEAHA.109.561787.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mokin M, Ansari SA, McTaggart RA, Bulsara KR, Goyal M, Chen M, et al. Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS Standards and Guidelines Committee. J Neurointerv Surg. 2019;11(3):215–20. https://doi.org/10.1136/neurintsurg-2018-014640.

    Article  PubMed  Google Scholar 

  4. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20. https://doi.org/10.1056/NEJMoa1411587.

    Article  CAS  PubMed  Google Scholar 

  5. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30. https://doi.org/10.1056/NEJMoa1414905.

    Article  CAS  PubMed  Google Scholar 

  6. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306. https://doi.org/10.1056/NEJMoa1503780.

    Article  CAS  PubMed  Google Scholar 

  7. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95. https://doi.org/10.1056/NEJMoa1415061.

    Article  CAS  PubMed  Google Scholar 

  8. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18. https://doi.org/10.1056/NEJMoa1414792.

    Article  CAS  PubMed  Google Scholar 

  9. •• Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110. https://doi.org/10.1161/STR.0000000000000158 The latest clinical guidelines from the American Heart Association/American Stroke Association.

    Article  PubMed  Google Scholar 

  10. Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European Stroke Organisation (ESO) - European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischaemic stroke endorsed by Stroke Alliance for Europe (SAFE). Eur Stroke J. 2019;4(1):6–12. https://doi.org/10.1177/2396987319832140.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leslie-Mazwi T, Chandra RV, Baxter BW, Arthur AS, Hussain MS, Singh IP, et al. ELVO: an operational definition. J Neurointerv Surg. 2018;10(6):507–9. https://doi.org/10.1136/neurintsurg-2018-013792.

    Article  PubMed  Google Scholar 

  12. National Institute of Neurological D, Stroke rt PASSG. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7. https://doi.org/10.1056/NEJM199512143332401.

    Article  Google Scholar 

  13. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29. https://doi.org/10.1056/NEJMoa0804656.

    Article  CAS  PubMed  Google Scholar 

  14. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu CH, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380:1795–803. https://doi.org/10.1056/NEJMoa1813046.

    Article  PubMed  Google Scholar 

  15. Ribo M, Alvarez-Sabin J, Montaner J, Romero F, Delgado P, Rubiera M, et al. Temporal profile of recanalization after intravenous tissue plasminogen activator: selecting patients for rescue reperfusion techniques. Stroke. 2006;37(4):1000–4. https://doi.org/10.1161/01.STR.0000206443.96112.d9.

    Article  CAS  PubMed  Google Scholar 

  16. Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41(10):2254–8. https://doi.org/10.1161/STROKEAHA.110.592535.

    Article  CAS  PubMed  Google Scholar 

  17. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–35. https://doi.org/10.1016/S0140-6736(14)60584-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet. 2012;379(9834):2364–72. https://doi.org/10.1016/S0140-6736(12)60738-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA. 1999;282(21):2003–11.

    Article  CAS  PubMed  Google Scholar 

  20. Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke. 2005;36(7):1432–8. https://doi.org/10.1161/01.STR.0000171066.25248.1d.

    Article  PubMed  Google Scholar 

  21. Penumbra Pivotal Stroke Trial I. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009;40(8):2761–8. https://doi.org/10.1161/STROKEAHA.108.544957.

    Article  Google Scholar 

  22. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, et al. Solitaire flow restoration device versus the Merci retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet. 2012;380(9849):1241–9. https://doi.org/10.1016/S0140-6736(12)61384-1.

    Article  PubMed  Google Scholar 

  23. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet. 2012;380(9849):1231–40. https://doi.org/10.1016/S0140-6736(12)61299-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ciccone A, Valvassori L, Investigators SE. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368(25):2433–4. https://doi.org/10.1056/NEJMc1304759.

    Article  PubMed  Google Scholar 

  25. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368(10):914–23. https://doi.org/10.1056/NEJMoa1212793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368(10):893–903. https://doi.org/10.1056/NEJMoa1214300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maingard J, Yan B. Future directions for intra-arterial therapy for acute ischaemic stroke: is there life after three negative randomized controlled studies? Interv Neurol. 2014;2(3):97–104. https://doi.org/10.1159/000356087.

    Article  PubMed  PubMed Central  Google Scholar 

  28. •• Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31. https://doi.org/10.1016/S0140-6736(16)00163-X This meta-analysis (HERMES) synthesises the findings from the five positive RCTs about ET published in NEJM 2015, forming a milestone in heralding ET as gold standard treatment for ELVO.

    Article  PubMed  Google Scholar 

  29. Campbell BCV, Mitchell PJ, Churilov L, Keshtkaran M, Hong KS, Kleinig TJ, et al. Endovascular thrombectomy for ischemic stroke increases disability-free survival, quality of life, and life expectancy and reduces cost. Front Neurol. 2017;8:657. https://doi.org/10.3389/fneur.2017.00657.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boudour S, Barral M, Gory B, Giroudon C, Aulagner G, Schott AM, et al. A systematic review of economic evaluations on stent-retriever thrombectomy for acute ischemic stroke. J Neurol. 2018;265(7):1511–20. https://doi.org/10.1007/s00415-018-8760-8.

    Article  PubMed  Google Scholar 

  31. •• Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21. https://doi.org/10.1056/NEJMoa1706442 The DAWN trial was the first published RCT testing the efficacy of ET amongst late presenters (6–24 hours after LKW), providing strong evidence that ET is safe and significantly superior to IVT alone in patients up to 24 hours after LKW.

    Article  PubMed  Google Scholar 

  32. •• Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18. https://doi.org/10.1056/NEJMoa1713973 Published shortly after DAWN, the DEFUSE-3 RCT demonstrates good efficacy and safety of ET in patients 6–16 hours after LKW, consolidating the argument for increasing the time window for ET using perfusion imaging.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Muir KW, Ford GA, Messow CM, Ford I, Murray A, Clifton A, et al. Endovascular therapy for acute ischaemic stroke: the Pragmatic Ischaemic Stroke Thrombectomy Evaluation (PISTE) randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2017;88(1):38–44. https://doi.org/10.1136/jnnp-2016-314117.

    Article  PubMed  Google Scholar 

  34. Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016;15(11):1138–47. https://doi.org/10.1016/S1474-4422(16)30177-6.

    Article  CAS  PubMed  Google Scholar 

  35. Mocco J, Zaidat OO, von Kummer R, Yoo AJ, Gupta R, Lopes D, et al. Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone. Stroke. 2016;47(9):2331–8. https://doi.org/10.1161/STROKEAHA.116.013372.

    Article  CAS  PubMed  Google Scholar 

  36. Vidale S, Longoni M, Valvassori L, Agostoni E. Mechanical thrombectomy in strokes with large-vessel occlusion beyond 6 hours: a pooled analysis of randomized trials. J Clin Neurol. 2018;14(3):407–12. https://doi.org/10.3988/jcn.2018.14.3.407.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Borst J, Berkhemer OA, Roos YB, van Bavel E, van Zwam WH, van Oostenbrugge RJ, et al. Value of computed tomographic perfusion-based patient selection for intra-arterial acute ischemic stroke treatment. Stroke. 2015;46(12):3375–82. https://doi.org/10.1161/STROKEAHA.115.010564.

    Article  CAS  PubMed  Google Scholar 

  38. About TENSION. TENSION Study, Hamburg, Germany. 2018. https://tension-study.com/about/. Accessed 1 May 2019.

  39. ClinicalTrials.gov: Efficacy and safety of thrombectomy in stroke with extended lesion and extended time window (tension). National Institute of Health. U.S. National Library of Medicine, Bethesda. 2019. https://clinicaltrials.gov/ct2/show/study/NCT03094715. Accessed 1 May 2019.

  40. ClinicalTrials.gov: Large Stroke Therapy Evaluation (LASTE). National Institute of Health. U.S. National Library of Medicine, Bethesda, USA. 2019. https://clinicaltrials.gov/ct2/show/NCT03811769?term=laste&rank=2. Accessed 2 May 2019.

  41. ClinicalTrials.gov: The TELSA Trial: Thrombectomy for Emergent Salvage of Large Anterior Circulation Ischemic Stroke (TESLA). National Institute of Health. U.S. National Library of Medicine., Bethesda, USA. 2019. https://clinicaltrials.gov/ct2/show/NCT03805308. Accessed 13 June 2019.

  42. Dargazanli C, Arquizan C, Gory B, Consoli A, Labreuche J, Redjem H, et al. Mechanical thrombectomy for minor and mild stroke patients harboring large vessel occlusion in the anterior circulation: a multicenter cohort study. Stroke. 2017;48(12):3274–81. https://doi.org/10.1161/STROKEAHA.117.018113.

    Article  PubMed  Google Scholar 

  43. ClinicalTrials.gov: Minor Stroke Therapy Evaluation (MOSTE). National Institute of Health. U.S. National Library of Medicine., Bethesda, USA. 2019. https://clinicaltrials.gov/ct2/show/NCT03796468?term=moste&rank=1. Accessed 2 May 2019.

  44. Chia NH, Leyden JM, Newbury J, Jannes J, Kleinig TJ. Determining the number of ischemic strokes potentially eligible for endovascular thrombectomy: a population-based study. Stroke. 2016;47(5):1377–80. https://doi.org/10.1161/STROKEAHA.116.013165.

    Article  PubMed  Google Scholar 

  45. Rai AT, Seldon AE, Boo S, Link PS, Domico JR, Tarabishy AR, et al. A population-based incidence of acute large vessel occlusions and thrombectomy eligible patients indicates significant potential for growth of endovascular stroke therapy in the USA. J Neurointerv Surg. 2017;9(8):722–6. https://doi.org/10.1136/neurintsurg-2016-012515.

    Article  PubMed  Google Scholar 

  46. Grossberg JA, Rebello LC, Haussen DC, Bouslama M, Bowen M, Barreira CM, et al. Beyond large vessel occlusion strokes: distal occlusion Thrombectomy. Stroke. 2018;49(7):1662–8. https://doi.org/10.1161/STROKEAHA.118.020567.

    Article  PubMed  Google Scholar 

  47. Shi ZS, Liebeskind DS, Loh Y, Saver JL, Starkman S, Vespa PM, et al. Predictors of subarachnoid hemorrhage in acute ischemic stroke with endovascular therapy. Stroke. 2010;41(12):2775–81. https://doi.org/10.1161/STROKEAHA.110.587063.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Demel SL, Broderick JP. Basilar occlusion syndromes: an update. Neurohospitalist. 2015;5(3):142–50. https://doi.org/10.1177/1941874415583847.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Findakly S, Maingard J, Phan K, Barras CD, Jhamb A, Chandra R, et al. Endovascular clot retrieval for M2 segment middle cerebral artery occlusion: a systematic review and meta-analysis. Intern Med J. 2019. https://doi.org/10.1111/imj.14333 The most recent and substantial body of evidence about endovascular treatment of distal occlusions to date, suggesting that ET for M2-MCA occlusions has favourable outcomes and good safety profile.

  50. Phan K, Maingard J, Kok HK, Dmytriw AA, Goyal S, Chandra R, et al. Contact aspiration versus stent-retriever thrombectomy for distal middle cerebral artery occlusions in acute ischemic stroke: meta-analysis. Neurointervention. 2018;13(2):100–9. https://doi.org/10.5469/neuroint.2018.00997.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Haussen DC, Lima A, Nogueira RG. The Trevo XP 3x20 mm retriever (‘Baby Trevo’) for the treatment of distal intracranial occlusions. J Neurointerv Surg. 2016;8(3):295–9. https://doi.org/10.1136/neurintsurg-2014-011613.

    Article  PubMed  Google Scholar 

  52. Hofmeister J, Kulcsar Z, Bernava G, Pellaton A, Yilmaz H, Erceg G, et al. The Catch Mini strent retriever for mechanical thrombectomy in distal intracranial occlusions. J Neuroradiol. 2018;45(5):305–9. https://doi.org/10.1016/j.neurad.2018.01.051.

    Article  PubMed  Google Scholar 

  53. Chiang CC, Dumitrascu OM, Wingerchuk DM, O'Carroll CB. Acute basilar artery occlusion: does recanalization improve clinical outcome? A critically appraised topic. Neurologist. 2018;23(2):71–4. https://doi.org/10.1097/NRL.0000000000000156.

    Article  PubMed  Google Scholar 

  54. Schonewille WJ, Wijman CA, Michel P, Rueckert CM, Weimar C, Mattle HP, et al. Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation Study (BASICS): a prospective registry study. Lancet Neurol. 2009;8(8):724–30. https://doi.org/10.1016/S1474-4422(09)70173-5.

    Article  PubMed  Google Scholar 

  55. ClinicalTrials.gov: Basilar Artery International Cooperation Study (BASICS). National Institute of Health. U.S. National Library of Medicine., Bethesda, USA. 2019. https://clinicaltrials.gov/ct2/show/NCT01717755. Accessed 10 June 2019.

  56. Grau AJ, Weimar C, Buggle F, Heinrich A, Goertler M, Neumaier S, et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke. 2001;32(11):2559–66.

    Article  CAS  PubMed  Google Scholar 

  57. • Zhu F, Bracard S, Anxionnat R, Derelle AL, Tonnelet R, Liao L, et al. Impact of emergent cervical carotid stenting in tandem occlusion strokes treated by thrombectomy: a review of the TITAN Collaboration. Front Neurol. 2019;10:206. https://doi.org/10.3389/fneur.2019.00206 This article summarises the findings from the 2012–2016, 305-patient TITAN registry, which provides new evidence that emergent carotid stenting with antiplatelet therapy is of significant benefit to functional outcomes when used in conjunction with ET for ELVO with tandem occlusions.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rubiera M, Ribo M, Delgado-Mederos R, Santamarina E, Delgado P, Montaner J, et al. Tandem internal carotid artery/middle cerebral artery occlusion: an independent predictor of poor outcome after systemic thrombolysis. Stroke. 2006;37(9):2301–5. https://doi.org/10.1161/01.STR.0000237070.80133.1d.

    Article  PubMed  Google Scholar 

  59. Wilson MP, Murad MH, Krings T, Pereira VM, O'Kelly C, Rempel J, et al. Management of tandem occlusions in acute ischemic stroke—intracranial versus extracranial first and extracranial stenting versus angioplasty alone: a systematic review and meta-analysis. J Neurointerv Surg. 2018;10(8):721–8. https://doi.org/10.1136/neurintsurg-2017-013707.

    Article  PubMed  Google Scholar 

  60. Jadhav AP, Zaidat OO, Liebeskind DS, Yavagal DR, Haussen DC, Hellinger FR Jr, et al. Emergent management of tandem lesions in acute ischemic stroke. Stroke. 2019;50(2):428–33. https://doi.org/10.1161/STROKEAHA.118.021893.

    Article  PubMed  Google Scholar 

  61. Wallocha M, Chapot R, Nordmeyer H, Fiehler J, Weber R, Stracke CP. Treatment methods and early neurologic improvement after endovascular treatment of tandem occlusions in acute ischemic stroke. Front Neurol. 2019;10:127. https://doi.org/10.3389/fneur.2019.00127.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goeggel Simonetti B, Cavelti A, Arnold M, Bigi S, Regenyi M, Mattle HP, et al. Long-term outcome after arterial ischemic stroke in children and young adults. Neurology. 2015;84(19):1941–7. https://doi.org/10.1212/WNL.0000000000001555.

    Article  PubMed  Google Scholar 

  63. Ferriero DM, Fullerton HJ, Bernard TJ, Billinghurst L, Daniels SR, DeBaun MR, et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke. 2019;50(3):e51–96. https://doi.org/10.1161/STR.0000000000000183.

    Article  PubMed  Google Scholar 

  64. Shoirah H, Shallwani H, Siddiqui AH, Levy EI, Kenmuir CL, Jovin TG, et al. Endovascular thrombectomy in pediatric patients with large vessel occlusion. J Neurointerv Surg. 2019;11:729–32. https://doi.org/10.1136/neurintsurg-2018-014320.

    Article  PubMed  Google Scholar 

  65. Leslie-Mazwi TM, Lev MH, Schaefer PW, Hirsch JA, Gonzalez RG. MR imaging selection of acute stroke patients with emergent large vessel occlusions for thrombectomy. Neuroimaging Clin N Am. 2018;28(4):573–84. https://doi.org/10.1016/j.nic.2018.06.003.

    Article  PubMed  Google Scholar 

  66. Bivard A, Parsons M. Tissue is more important than time: insights into acute ischemic stroke from modern brain imaging. Curr Opin Neurol. 2018;31(1):23–7. https://doi.org/10.1097/WCO.0000000000000520.

    Article  PubMed  Google Scholar 

  67. Ryu WHA, Avery MB, Dharampal N, Allen IE, Hetts SW. Utility of perfusion imaging in acute stroke treatment: a systematic review and meta-analysis. J Neurointerv Surg. 2017;9(10):1012–6. https://doi.org/10.1136/neurintsurg-2016-012751.

    Article  PubMed  Google Scholar 

  68. Tsivgoulis G, Katsanos AH, Schellinger PD, Kohrmann M, Caso V, Palaiodimou L, et al. Advanced neuroimaging in stroke patient selection for mechanical thrombectomy. Stroke. 2018;49(12):3067–70. https://doi.org/10.1161/STROKEAHA.118.022540.

    Article  PubMed  Google Scholar 

  69. Thirugnanachandran T, Ma H, Singhal S, Slater LA, Davis SM, Donnan GA, et al. Refining the ischemic penumbra with topography. Int J Stroke. 2018;13(3):277–84. https://doi.org/10.1177/1747493017743056.

    Article  PubMed  Google Scholar 

  70. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, et al. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. JAMA. 2017;318(5):443–52. https://doi.org/10.1001/jama.2017.9644.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Turk AS, Siddiqui AH, Mocco J. A comparison of direct aspiration versus stent retriever as a first approach (‘COMPASS’): protocol. J Neurointerv Surg. 2018;10(10):953–7. https://doi.org/10.1136/neurintsurg-2017-013722.

    Article  PubMed  Google Scholar 

  72. Prochazka V, Jonszta T, Czerny D, Krajca J, Roubec M, Hurtikova E, et al. Comparison of mechanical thrombectomy with contact aspiration, stent retriever, and combined procedures in patients with large-vessel occlusion in acute ischemic stroke. Med Sci Monit. 2018;24:9342–53. https://doi.org/10.12659/MSM.913458.

    Article  PubMed  PubMed Central  Google Scholar 

  73. • Kang DH, Hwang YH. Frontline contact aspiration treatment for emergent large vessel occlusion: a review focused on practical techniques. J Stroke. 2019;21(1):10–22. https://doi.org/10.5853/jos.2018.03076 This recent large-scale meta-analysis of RCT data provides strong support for the role of perfusion imaging-based patient selection in significantly improving functional outcomes post-ET.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schwaiger BJ, Kober F, Gersing AS, Kleine JF, Wunderlich S, Zimmer C, et al. The pREset stent retriever for endovascular treatment of stroke caused by MCA occlusion: safety and clinical outcome. Clin Neuroradiol. 2016;26(1):47–55. https://doi.org/10.1007/s00062-014-0329-z.

    Article  CAS  PubMed  Google Scholar 

  75. Kaneko N, Komuro Y, Yokota H, Tateshima S. Stent retrievers with segmented design improve the efficacy of thrombectomy in tortuous vessels. J Neurointerv Surg. 2019;11(2):119–22. https://doi.org/10.1136/neurintsurg-2018-014061.

    Article  PubMed  Google Scholar 

  76. Fennell VS, Setlur Nagesh SV, Meess KM, Gutierrez L, James RH, Springer ME, et al. What to do about fibrin rich ‘tough clots’? Comparing the solitaire stent retriever with a novel geometric clot extractor in an in vitro stroke model. J Neurointerv Surg. 2018;10(9):907–10. https://doi.org/10.1136/neurintsurg-2017-013507.

    Article  PubMed  Google Scholar 

  77. Gruber P, Zeller S, Garcia-Esperon C, Berberat J, Anon J, Diepers M, et al. Embolus retriever with interlinked cages versus other stent retrievers in acute ischemic stroke: an observational comparative study. J Neurointerv Surg. 2018;10(12):e31. https://doi.org/10.1136/neurintsurg-2018-013838.

    Article  PubMed  Google Scholar 

  78. Yeo LLL, Bhogal P, Gopinathan A, Cunli Y, Tan B, Andersson T. Why does mechanical thrombectomy in large vessel occlusion sometimes fail?: a review of the literature. Clin Neuroradiol. 2019;29:401–14. https://doi.org/10.1007/s00062-019-00777-1.

    Article  PubMed  Google Scholar 

  79. Baird AE. Paving the way for improved treatment of acute stroke with tenecteplase. N Engl J Med. 2018;378(17):1635–6. https://doi.org/10.1056/NEJMe1801978.

    Article  PubMed  Google Scholar 

  80. • Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, et al. Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;378(17):1573–82. https://doi.org/10.1056/NEJMoa1716405 This protocol-based RCT demonstrates a clear benefit to reperfusion and patient outcomes with tenecteplase as opposed to alteplase for pre-ET thrombolysis, implying the need for a change in longstanding practice.

    Article  CAS  PubMed  Google Scholar 

  81. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366(12):1099–107. https://doi.org/10.1056/NEJMoa1109842.

    Article  CAS  PubMed  Google Scholar 

  82. Xu N, Chen Z, Zhao C, Xue T, Wu X, Sun X, et al. Different doses of tenecteplase vs alteplase in thrombolysis therapy of acute ischemic stroke: evidence from randomized controlled trials. Drug Des Devel Ther. 2018;12:2071–84. https://doi.org/10.2147/DDDT.S170803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ronning OM, Logallo N, Thommessen B, Tobro H, Novotny V, Kvistad CE, et al. Tenecteplase versus alteplase between 3 and 4.5 hours in low National Institutes of Health Stroke Scale. Stroke. 2019;50(2):498–500. https://doi.org/10.1161/STROKEAHA.118.024223.

    Article  CAS  PubMed  Google Scholar 

  84. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Ronning OM, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017;16(10):781–8. https://doi.org/10.1016/S1474-4422(17)30253-3.

    Article  CAS  PubMed  Google Scholar 

  85. Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, et al. Alteplase versus tenecteplase for thrombolysis after ischaemic stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. Lancet Neurol. 2015;14(4):368–76. https://doi.org/10.1016/S1474-4422(15)70017-7.

    Article  CAS  PubMed  Google Scholar 

  86. Kheiri B, Osman M, Abdalla A, Haykal T, Ahmed S, Hassan M, et al. Tenecteplase versus alteplase for management of acute ischemic stroke: a pairwise and network meta-analysis of randomized clinical trials. J Thromb Thrombolysis. 2018;46(4):440–50. https://doi.org/10.1007/s11239-018-1721-3.

    Article  CAS  PubMed  Google Scholar 

  87. ClinicalTrials.gov: Determining the optimal dose of tenecteplase before endovascular therapy for ischaemic stroke (EXTEND-IA TNK part 2). National Institute of Health. U.S. National Library of Medicine, Bethesda. 2019. https://clinicaltrials.gov/ct2/show/NCT03340493. Accessed 5 May 2019.

  88. Brekenfeld C, Mattle HP, Schroth G. General is better than local anesthesia during endovascular procedures. Stroke. 2010;41(11):2716–7. https://doi.org/10.1161/STROKEAHA.110.594622.

    Article  PubMed  Google Scholar 

  89. Messick JM Jr, Newberg LA, Nugent M, Faust RJ. Principles of neuroanesthesia for the nonneurosurgical patient with CNS pathophysiology. Anesth Analg. 1985;64(2):143–74.

    Article  PubMed  Google Scholar 

  90. Gupta R. Local is better than general anesthesia during endovascular acute stroke interventions. Stroke. 2010;41(11):2718–9. https://doi.org/10.1161/STROKEAHA.110.596015.

    Article  PubMed  Google Scholar 

  91. Campbell BCV, van Zwam WH, Goyal M, Menon BK, Dippel DWJ, Demchuk AM, et al. Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data. Lancet Neurol. 2018;17(1):47–53. https://doi.org/10.1016/S1474-4422(17)30407-6.

    Article  PubMed  Google Scholar 

  92. Schonenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, et al. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. JAMA. 2016;316(19):1986–96. https://doi.org/10.1001/jama.2016.16623.

    Article  PubMed  Google Scholar 

  93. Lowhagen Henden P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, et al. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (anesthesia during stroke). Stroke. 2017;48(6):1601–7. https://doi.org/10.1161/STROKEAHA.117.016554.

    Article  CAS  PubMed  Google Scholar 

  94. Sorensen LH, Speiser L, Karabegovic S, Yoo AJ, Rasmussen M, Sorensen KE, et al. Safety and quality of endovascular therapy under general anesthesia and conscious sedation are comparable: results from the GOLIATH trial. J Neurointerv Surg. 2019. https://doi.org/10.1136/neurintsurg-2019-014712.

    Article  PubMed  Google Scholar 

  95. Tirschwell DL, Longstreth WT Jr, Becker KJ, Gammans RE Sr, Sabounjian LA, Hamilton S, et al. Shortening the NIH stroke scale for use in the prehospital setting. Stroke. 2002;33(12):2801–6.

    Article  PubMed  Google Scholar 

  96. Katz BS, McMullan JT, Sucharew H, Adeoye O, Broderick JP. Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale. Stroke. 2015;46(6):1508–12. https://doi.org/10.1161/STROKEAHA.115.008804.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Perez de la Ossa N, Carrera D, Gorchs M, Querol M, Millan M, Gomis M, et al. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. Stroke. 2014;45(1):87–91. https://doi.org/10.1161/STROKEAHA.113.003071.

    Article  PubMed  Google Scholar 

  98. Kidwell CS, Starkman S, Eckstein M, Weems K, Saver JL. Identifying stroke in the field. Prospective validation of the Los Angeles prehospital stroke screen (LAPSS). Stroke. 2000;31(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  99. Lima FO, Silva GS, Furie KL, Frankel MR, Lev MH, Camargo EC, et al. Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes. Stroke. 2016;47(8):1997–2002. https://doi.org/10.1161/STROKEAHA.116.013301.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Krebs W, Sharkey-Toppen TP, Cheek F, Cortez E, Larrimore A, Keseg D, et al. Prehospital stroke assessment for large vessel occlusions: a systematic review. Prehosp Emerg Care. 2018;22(2):180–8. https://doi.org/10.1080/10903127.2017.1371263.

    Article  PubMed  Google Scholar 

  101. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, et al. Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke. Stroke. 2018;49(3):e111–e22. https://doi.org/10.1161/STR.0000000000000160.

    Article  PubMed  Google Scholar 

  102. Keenan KJ, Kircher C, McMullan JT. Prehospital prediction of large vessel occlusion in suspected stroke patients. Curr Atheroscler Rep. 2018;20(7):34. https://doi.org/10.1007/s11883-018-0734-x.

    Article  PubMed  Google Scholar 

  103. Zhelev Z, Walker G, Henschke N, Fridhandler J, Yip S. Prehospital stroke scales as screening tools for early identification of stroke and transient ischemic attack. Cochrane Database Syst Rev. 2019;4:CD011427. https://doi.org/10.1002/14651858.CD011427.pub2.

    Article  PubMed  Google Scholar 

  104. Hodell E, Hughes SD, Corry M, Kivlehan S, Resler B, Sheon N, et al. Paramedic perspectives on barriers to prehospital acute stroke recognition. Prehosp Emerg Care. 2016;20(3):415–24. https://doi.org/10.3109/10903127.2015.1115933.

    Article  PubMed  Google Scholar 

  105. Koster GT, Nguyen TTM, van Zwet EW, Garcia BL, Rowling HR, Bosch J, et al. Clinical prediction of thrombectomy eligibility: a systematic review and 4-item decision tree. Int J Stroke. 2018:1747493018801225;14:530–9. https://doi.org/10.1177/1747493018801225.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Demaerschalk BM, Raman R, Ernstrom K, Meyer BC. Efficacy of telemedicine for stroke: pooled analysis of the stroke team remote evaluation using a digital observation camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. Telemed J E Health. 2012;18(3):230–7. https://doi.org/10.1089/tmj.2011.0116.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sequeira D, Martin-Gill C, Kesinger MR, Thompson LR, Jovin TG, Massaro LM, et al. Characterizing strokes and stroke mimics transported by helicopter emergency medical services. Prehosp Emerg Care. 2016;20(6):723–8. https://doi.org/10.3109/10903127.2016.1168889.

    Article  PubMed  Google Scholar 

  108. Barlinn J, Gerber J, Barlinn K, Pallesen LP, Siepmann T, Zerna C, et al. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study. Int J Stroke. 2017;12(5):502–9. https://doi.org/10.1177/1747493016681018.

    Article  PubMed  Google Scholar 

  109. Pride GL, Fraser JF, Gupta R, Alberts MJ, Rutledge JN, Fowler R, et al. Prehospital care delivery and triage of stroke with emergent large vessel occlusion (ELVO): report of the Standards and Guidelines Committee of the Society of Neurointerventional Surgery. J Neurointerv Surg. 2017;9(8):802–12. https://doi.org/10.1136/neurintsurg-2016-012699.

    Article  PubMed  Google Scholar 

  110. Wade SS. Endovascular stroke therapy. Neurotherapeutics. 2019;16(2):360–8. https://doi.org/10.1007/s13311-019-00724-5.

    Article  Google Scholar 

  111. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316(12):1279–88. https://doi.org/10.1001/jama.2016.13647.

    Article  PubMed  Google Scholar 

  112. Ismail M, Armoiry X, Tau N, Zhu F, Sadeh-Gonik U, Piotin M, et al. Mothership versus drip and ship for thrombectomy in patients who had an acute stroke: a systematic review and meta-analysis. J Neurointerv Surg. 2019;11(1):14–9. https://doi.org/10.1136/neurintsurg-2018-014249.

    Article  PubMed  Google Scholar 

  113. Brekenfeld C, Goebell E, Schmidt H, Henningsen H, Kraemer C, Tebben J, et al. ‘Drip-and-drive’: shipping the neurointerventionalist to provide mechanical thrombectomy in primary stroke centers. J Neurointerv Surg. 2018;10(10):932–6. https://doi.org/10.1136/neurintsurg-2017-013634.

    Article  PubMed  Google Scholar 

  114. Seker F, Mohlenbruch MA, Nagel S, Ulfert C, Schonenberger S, Pfaff J, et al. Clinical results of a new concept of neurothrombectomy coverage at a remote hospital-“drive the doctor”. Int J Stroke. 2018;13(7):696–9. https://doi.org/10.1177/1747493018765267.

    Article  PubMed  Google Scholar 

  115. Osanai T, Ito Y, Ushikoshi S, Aoki T, Kawabori M, Fujiwara K, et al. Efficacy of ‘drive and retrieve’ as a cooperative method for prompt endovascular treatment for acute ischemic stroke. J Neurointerv Surg. 2019;11:757–61. https://doi.org/10.1136/neurintsurg-2018-014296.

    Article  PubMed  Google Scholar 

  116. Calderon VJ, Kasturiarachi BM, Lin E, Bansal V, Zaidat OO. Review of the mobile stroke unit experience worldwide. Interv Neurol. 2018;7(6):347–58. https://doi.org/10.1159/000487334.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ebinger M, Winter B, Wendt M, Weber JE, Waldschmidt C, Rozanski M, et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 2014;311(16):1622–31. https://doi.org/10.1001/jama.2014.2850.

    Article  CAS  PubMed  Google Scholar 

  118. Prabhakaran S, Ward E, John S, Lopes DK, Chen M, Temes RE, et al. Transfer delay is a major factor limiting the use of intra-arterial treatment in acute ischemic stroke. Stroke. 2011;42(6):1626–30. https://doi.org/10.1161/STROKEAHA.110.609750.

    Article  CAS  PubMed  Google Scholar 

  119. Crowe RP, Levine R, Bentley MA. Prehospital helicopter air ambulances part 1: access, protocols, and utilization. Air Med J. 2015;34(6):333–6. https://doi.org/10.1016/j.amj.2015.06.004.

    Article  PubMed  Google Scholar 

  120. Hutton CF, Fleming J, Youngquist S, Hutton KC, Heiser DM, Barton ED. Stroke and helicopter emergency medical service transports: an analysis of 25,332 patients. Air Med J. 2015;34(6):348–56. https://doi.org/10.1016/j.amj.2015.06.011.

    Article  PubMed  Google Scholar 

  121. Hesselfeldt R, Gyllenborg J, Steinmetz J, Do HQ, Hejselbaek J, Rasmussen LS. Is air transport of stroke patients faster than ground transport? A prospective controlled observational study. Emerg Med J. 2014;31(4):268–72. https://doi.org/10.1136/emermed-2012-202270.

    Article  PubMed  Google Scholar 

  122. Stowell A, Bobbia X, Cheret J, Genre Grandpierre R, Moreau A, Pommet S, et al. Out-of-hospital times using helicopters versus ground services for emergency patients. Air Med J. 2019;38(2):100–5. https://doi.org/10.1016/j.amj.2018.11.017.

    Article  PubMed  Google Scholar 

  123. Phan TG, Beare R, Chen J, Clissold B, Ly J, Singhal S, et al. Googling service boundaries for endovascular clot retrieval hub hospitals in a metropolitan setting: proof-of-concept study. Stroke. 2017;48(5):1353–61. https://doi.org/10.1161/STROKEAHA.116.015323.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thabele M Leslie-Mazwi MD.

Ethics declarations

Conflict of Interest

Julian Maingard declares that he has no conflict of interest. Michelle Foo declares that she has no conflict of interest. Ronil V Chandra declares that he has no conflict of interest. Thabele M Leslie-Mazwi declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cerebrovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maingard, J., Foo, M., Chandra, R.V. et al. Endovascular Treatment of Acute Ischemic Stroke. Curr Treat Options Cardio Med 21, 89 (2019). https://doi.org/10.1007/s11936-019-0781-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0781-9

Keywords

Navigation