Skip to main content

Advertisement

Log in

Management of Cardio-Renal Syndrome and Diuretic Resistance

  • Heart Failure (W Tang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Diuretic resistance in acute heart failure has emerged as a powerful predictor of adverse outcome, which is often independent of underlying glomerular filtration rate (GFR). Metrics of diuretic efficacy differ in their accuracy, convenience, and biological plausibility, which should be taken into account when interpreting their results. Loop diuretic efficacy depends on adequate delivery of both the pharmacological agent itself and its substrate (i.e., sodium chloride) to the loop diuretic site of action at the luminal side of the thick ascending limb of Henle’s loop. This requires an adequate dosing strategy, with higher doses needed when GFR is low. Importantly, the kidneys are able only to regulate the effective circulatory volume. Thus, specific problems of intravascular volume depletion and poor cardiac output with impaired renal perfusion should be addressed. Addition of thiazide-type diuretics should be considered when a progressive decrease in loop diuretic efficacy is observed with prolonged use (i.e., the braking phenomenon). Furthermore, thiazide-type diuretics are a useful addition in patients with low GFR to maximally boost fractional sodium excretion when nephron perfusion is poor. However, thiazide-type diuretics limit free water excretion and should be withheld in cases of hypotonic hyponatremia. Mineralocorticoid receptor antagonists (MRA) and acetazolamide are interesting options to increase loop diuretic efficacy, but further study is needed to assess whether improved diuretic efficacy also translates into clinical outcome benefits. Finally, ultrafiltration should be considered in patients with refractory diuretic resistance as persistent volume overload after decongestive treatment is associated with worse outcomes. Whether more upfront use of individually tailored ultrafiltration is superior to pharmacological therapy remains to be shown by adequately powered randomized clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dupont M, Mullens W, Tang WH. Impact of systemic venous congestion in heart failure. Curr Heart Fail Rep. 2011;8:233–41.

    Article  PubMed  Google Scholar 

  2. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  3. Damman K, Valente MA, Voors AA, et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35:455–69.

    Article  PubMed  Google Scholar 

  4. Testani JM, Chen J, McCauley BD, et al. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265–72.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5:54–62.

    Article  PubMed  Google Scholar 

  6. Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: ‘Are natriuresis, sodium, and diuretics really the good, the bad and the ugly?’. Eur J Heart Fail. 2014;16:133–42. This review gives a comprehensive overview of the mechanisms of renal sodium handling in heart failure, providing the background that is needed to mechanistically understand the multiple causes of diuretic resistance.

    Article  CAS  PubMed  Google Scholar 

  7. Testani JM, Brisco MA, Turner JM, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7:261–70. Important paper showing the relationship between loop diuretic efficacy and good clinical outcome, independently from underlying glomerular filtration rate.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Valente MA, Voors AA, Damman K, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35:1284–93.

    Article  CAS  PubMed  Google Scholar 

  9. Singh D, Shrestha K, Testani JM, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20:392–9. Observational study suggesting that substrate delivery and loop diuretic pharmacokinetics are the predominant reason for diuretic resistance in advanced heart failure.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Aronson D, Burger AJ. Diuretic response: clinical and hemodynamic predictors and relation to clinical outcome. J Card Fail. 2015. doi:10.1016/j.cardfail.2015.07.006.

  11. Ter Maaten JM, Dunning AM, Valente MA, et al. Diuretic response in acute heart failure-an analysis from ASCEND-HF. Am Heart J. 2015;170:313–21. e4.

    Article  PubMed  Google Scholar 

  12. Verbrugge FH, Dupont M, Bertrand PB, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015;70:265–73. Small observational study showing the potential of acetazolamide to increase loop diuretic efficacy.

    PubMed  Google Scholar 

  13. Kumar D, Bagarhatta R. Fractional excretion of sodium and its association with prognosis of decompensated heart failure patients. J Clin Diagn Res. 2015;9:OC01–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Testani JM, Brisco MA, Kociol RD, et al. Substantial discrepancy between fluid and weight loss during acute decompensated heart failure treatment. Am J Med. 2015;128:776–83. e4.

    Article  PubMed  Google Scholar 

  15. Voors AA, Davison BA, Teerlink JR, et al. Diuretic response in patients with acute decompensated heart failure: characteristics and clinical outcome–an analysis from RELAX-AHF. Eur J Heart Fail. 2014;16:1230–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Verbrugge FH, Grieten L, Mullens W. Management of the cardiorenal syndrome in decompensated heart failure. Cardiorenal Med. 2014;4:176–88.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol. 2015;10:676–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Verbrugge FH, Nijst P, Dupont M, et al. Prognostic value of glomerular filtration changes versus natriuretic response in decompensated heart failure with reduced ejection. J Card Fail. 2014;20:817–24.

    Article  CAS  PubMed  Google Scholar 

  19. Gheorghiade M, Shin DD, Thomas TO, et al. Congestion is an important diagnostic and therapeutic target in heart failure. Rev Cardiovasc Med. 2006;7 Suppl 1:S12–24.

    PubMed  Google Scholar 

  20. Beermann B, Midskov C. Reduced bioavailability and effect of furosemide given with food. Eur J Clin Pharmacol. 1986;29:725–7.

    Article  CAS  PubMed  Google Scholar 

  21. McCrindle JL, Li Kam Wa TC, Barron W, et al. Effect of food on the absorption of frusemide and bumetanide in man. Br J Clin Pharmacol. 1996;42:743–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Brater DC. Diuretic therapy. N Engl J Med. 1998;339:387–95.

    Article  CAS  PubMed  Google Scholar 

  23. Bard RL, Bleske BE, Nicklas JM. Food: an unrecognized source of loop diuretic resistance. Pharmacotherapy. 2004;24:630–7.

    Article  CAS  PubMed  Google Scholar 

  24. Vasko MR, Cartwright DB, Knochel JP, et al. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985;102:314–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gottlieb SS, Khatta M, Wentworth D, et al. The effects of diuresis on the pharmacokinetics of the loop diuretics furosemide and torsemide in patients with heart failure. Am J Med. 1998;104:533–8.

    Article  CAS  PubMed  Google Scholar 

  26. Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62:485–95.

    Article  PubMed  Google Scholar 

  27. Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002;13:798–805.

    PubMed  Google Scholar 

  28. Loon NR, Wilcox CS. Mild metabolic alkalosis impairs the natriuretic response to bumetanide in normal human subjects. Clin Sci (Lond). 1998;94:287–92.

    Article  CAS  Google Scholar 

  29. Uwai Y, Saito H, Hashimoto Y, et al. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther. 2000;295:261–5.

    CAS  PubMed  Google Scholar 

  30. Kirchner KA, Voelker JR, Brater DC. Intratubular albumin blunts the response to furosemide-A mechanism for diuretic resistance in the nephrotic syndrome. J Pharmacol Exp Ther. 1990;252:1097–101.

    CAS  PubMed  Google Scholar 

  31. Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol. 2004;24:595–605.

    Article  CAS  PubMed  Google Scholar 

  32. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  33. Adamson PB, Magalski A, Braunschweig F, et al. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol. 2003;41:565–71.

    Article  PubMed  Google Scholar 

  34. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4:669–75.

    Article  PubMed  Google Scholar 

  35. Verbrugge FH, Nijst P, Dupont M, et al. Urinary composition during decongestive treatment in heart failure with reduced ejection fraction. Circ Heart Fail. 2014;7:766–72. Observational study suggesting that the measurement of urinary sodium and chloride concentrations might help to assess intravascular volume status.

    Article  CAS  PubMed  Google Scholar 

  36. Nijst P, Verbrugge FH, Grieten L, et al. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol. 2015;65:378–88.

    Article  CAS  PubMed  Google Scholar 

  37. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–8.

    Article  CAS  PubMed  Google Scholar 

  38. Chaudhry SI, Wang Y, Concato J, et al. Patterns of weight change preceding hospitalization for heart failure. Circulation. 2007;116:1549–54.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Shah MR, Hasselblad V, Tasissa G, et al. Rapid assay brain natriuretic peptide and troponin I in patients hospitalized with decompensated heart failure (from the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness Trial). Am J Cardiol. 2007;100:1427–33.

    Article  CAS  PubMed  Google Scholar 

  40. Coodley EL, Segal JL, Smith DH, et al. Bioelectrical impedance analysis as an assessment of diuresis in congestive heart failure. Ann Pharmacother. 1995;29:1091–5.

    CAS  PubMed  Google Scholar 

  41. Gastelurrutia P, Nescolarde L, Rosell-Ferrer J, et al. Bioelectrical impedance vector analysis (BIVA) in stable and non-stable heart failure patients: a pilot study. Int J Cardiol. 2011;146:262–4.

    Article  PubMed  Google Scholar 

  42. Alves FD, Souza GC, Aliti GB, et al. Dynamic changes in bioelectrical impedance vector analysis and phase angle in acute decompensated heart failure. Nutrition. 2015;31:84–9.

    Article  PubMed  Google Scholar 

  43. Mullens W, Abrahams Z, Francis GS, et al. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail. 2008;14:508–14.

    Article  PubMed  Google Scholar 

  44. Testani JM, Coca SG, McCauley BD, et al. Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes. Eur J Heart Fail. 2011;13:877–84.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dupont M, Mullens W, Finucan M, et al. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail. 2013;15:433–40.

    Article  CAS  PubMed  Google Scholar 

  46. Miller WL, Mullan BP. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation. JACC Heart Fail. 2014;2:298–305.

    Article  PubMed  Google Scholar 

  47. Fonarow GC, Corday E. Overview of acutely decompensated congestive heart failure (ADHF): a report from the ADHERE registry. Heart Fail Rev. 2004;9:179–85.

    Article  PubMed  Google Scholar 

  48. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364:797–805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ellison DH. Diuretic therapy and resistance in congestive heart failure. Cardiology. 2001;96:132–43.

    Article  CAS  PubMed  Google Scholar 

  50. Mentz RJ, Stevens SR, DeVore AD, et al. Decongestion strategies and renin-angiotensin-aldosterone system activation in acute heart failure. JACC Heart Fail. 2015;3:97–107.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Verbrugge FH, Tang WH, Mullens W. Renin-Angiotensin-aldosterone system activation during decongestion in acute heart failure: friend or foe? JACC Heart Fail. 2015;3:108–11.

    Article  PubMed  Google Scholar 

  52. Kramer BK, Schweda F, Riegger GA. Diuretic treatment and diuretic resistance in heart failure. Am J Med. 1999;106:90–6.

    Article  CAS  PubMed  Google Scholar 

  53. Khot UN, Mishra M, Yamani MH, et al. Severe renal dysfunction complicating cardiogenic shock is not a contraindication to mechanical support as a bridge to cardiac transplantation. J Am Coll Cardiol. 2003;41:381–5.

    Article  PubMed  Google Scholar 

  54. Sandner SE, Zimpfer D, Zrunek P, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87:1072–8.

    Article  PubMed  Google Scholar 

  55. Hasin T, Topilsky Y, Schirger JA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59:26–36.

    Article  PubMed  Google Scholar 

  56. Brisco MA, Kimmel SE, Coca SG, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7:68–75.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med. 1991;325:1468–75.

    Article  CAS  PubMed  Google Scholar 

  58. O’Connor CM, Gattis WA, Uretsky BF, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1999;138:78–86.

    Article  PubMed  Google Scholar 

  59. Knauf H, Mutschler E. Functional state of the nephron and diuretic dose-response–rationale for low-dose combination therapy. Cardiology. 1994;84 Suppl 2:18–26.

    Article  PubMed  Google Scholar 

  60. Verbrugge FH, Steels P, Grieten L, et al. Hyponatremia in acute decompensated heart failure: depletion versus dilution. J Am Coll Cardiol. 2015;65:480–92.

    Article  CAS  PubMed  Google Scholar 

  61. Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56:1527–34.

    Article  CAS  PubMed  Google Scholar 

  62. Grodin JL, Stevens SR, de Las Fuentes L, et al. Intensification of medication therapy for cardiorenal syndrome in acute decompensated heart failure. J Card Fail. 2016;22:26–32.

  63. van Vliet AA, Donker AJ, Nauta JJ, et al. Spironolactone in congestive heart failure refractory to high-dose loop diuretic and low-dose angiotensin-converting enzyme inhibitor. Am J Cardiol. 1993;71:21A–8.

    Article  PubMed  Google Scholar 

  64. Santos J, Planas R, Pardo A, et al. Spironolactone alone or in combination with furosemide in the treatment of moderate ascites in nonazotemic cirrhosis. A randomized comparative study of efficacy and safety. J Hepatol. 2003;39:187–92.

    Article  CAS  PubMed  Google Scholar 

  65. Ferreira JP, Santos M, Almeida S, et al. Mineralocorticoid receptor antagonism in acutely decompensated chronic heart failure. Eur J Intern Med. 2014;25:67–72.

    Article  CAS  PubMed  Google Scholar 

  66. Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. Am J Physiol. 1998;274:R263–79.

    CAS  PubMed  Google Scholar 

  67. Zahedi K, Barone S, Xu J, et al. Potentiation of the effect of thiazide derivatives by carbonic anhydrase inhibitors: molecular mechanisms and potential clinical implications. PLoS One. 2013;8:e79327.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Amlal H, Soleimani M. Pendrin as a novel target for diuretic therapy. Cell Physiol Biochem. 2011;28:521–6.

    Article  CAS  PubMed  Google Scholar 

  69. Soleimani M, Barone S, Xu J, et al. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci U S A. 2012;109:13368–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Hanley T, Platts MM. Acetazolamide (diamox) in the treatment of congestive heart-failure. Lancet. 1956;270:357–9.

    Article  CAS  PubMed  Google Scholar 

  71. Knauf H, Mutschler E. Sequential nephron blockade breaks resistance to diuretics in edematous states. J Cardiovasc Pharmacol. 1997;29:367–72.

    Article  CAS  PubMed  Google Scholar 

  72. Ali SS, Olinger CC, Sobotka PA, et al. Loop diuretics can cause clinical natriuretic failure: a prescription for volume expansion. Congest Heart Fail. 2009;15:1–4.

    Article  CAS  PubMed  Google Scholar 

  73. Costanzo MR, Guglin ME, Saltzberg MT, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49:675–83.

    Article  CAS  PubMed  Google Scholar 

  74. Bart BA, Goldsmith SR, Lee KL, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Patarroyo M, Wehbe E, Hanna M, et al. Cardiorenal outcomes after slow continuous ultrafiltration therapy in refractory patients with advanced decompensated heart failure. J Am Coll Cardiol. 2012;60:1906–12.

    Article  PubMed  Google Scholar 

  76. Costanzo MR, Negoianu D, Fonarow GC, et al. Rationale and design of the Aquapheresis Versus Intravenous Diuretics and Hospitalization for Heart Failure (AVOID-HF) trial. Am Heart J. 2015;170:471–82. Methods paper of the AVOID-HF trial which compared individually tailored ultrafiltration with adjustable loop diuretics in patients with acute heart failure and clear signs of volume overload. Although a trend towards a benefit with ultrafiltration was observed, the study was regrettably terminated by the sponsor, rendering its results severely underpowered and inconclusive.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik H. Verbrugge MD, PhD.

Ethics declarations

Conflict of Interest

Frederik H. Verbrugge and Wilfried Mullens each declare no potential conflicts of interest. W.H. Wilson Tang is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbrugge, F.H., Mullens, W. & Tang, W.W. Management of Cardio-Renal Syndrome and Diuretic Resistance. Curr Treat Options Cardio Med 18, 11 (2016). https://doi.org/10.1007/s11936-015-0436-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0436-4

Keywords

Navigation