Skip to main content
Log in

The Emerging Roles of Leadless Devices

  • Arrhythmia (D Spragg, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The role of leadless devices to treat cardiac rhythm disorders and heart failure is emerging. Subcutaneous defibrillator (S-ICD) and leadless pacemakers were developed to ameliorate the risks associated with chronic transvenous leads. Potential benefits of leadless pacemakers and S-ICD include more favorable infection profile, less risk of venous stenosis or occlusion, and less risk of tricuspid valve insufficiency. Novel implantable leadless monitors for heart failure represent a novel diagnostic tool that can guide therapy for CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kleemann T, Becker T, Doenges K, Vater M, Senges J, Schneider S, et al. Annual rate of transvenous defibrillation lead defects in implantable cardioverter-defibrillators over a period of >10 years. Circulation. 2007;115:2474–80.

    Article  PubMed  Google Scholar 

  2. Maron BJ, Spirito P, Shen W-K, Haas TS, Formisano F, Link MS, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA. 2007;298:405–12.

    CAS  PubMed  Google Scholar 

  3. Hreybe H, Razak E, Saba S. Effect of end-stage renal failure and hemodialysis on mortality rates in implantable cardioverter-defibrillator recipients. PACE - Pacing Clin Electrophysiol. 2007;30:1091–5.

    Article  PubMed  Google Scholar 

  4. Luedemann M, Hund K, Stertmann W, Michel-Behnke I, Gonzales M, Akintuerk H, et al. Implantable cardioverter defibrillator in a child using a single subcutaneous array lead and an abdominal active can. PACE - Pacing Clin Electrophysiol. 2004;27:117–9.

    Article  PubMed  Google Scholar 

  5. Cannizzaro LA, Piccini JP, Patel UD, Hernandez AF. Device therapy in heart failure patients with chronic kidney disease. J Am Coll Cardiol. 2011;58:889–96.

    Article  PubMed  Google Scholar 

  6. Baquero GA, Luck J, Naccarelli GV, Gonzalez MD, Banchs JE. Tricuspid valve incompetence following implantation of ventricular leads. Curr Heart Fail Rep. 2015;12:150–7.

    Article  PubMed  Google Scholar 

  7. Supple GE, Ren J-F, Zado ES, Marchlinski FE. Mobile thrombus on device leads in patients undergoing ablation: identification, incidence, location, and association with increased pulmonary artery systolic pressure. Circulation. 2011;124:772–8.

    Article  PubMed  Google Scholar 

  8. Wazni O, Epstein LM, Carrillo RG, Love C, Adler SW, Riggio DW, et al. Lead extraction in the contemporary setting: the LExICon Study. An observational retrospective study of consecutive laser lead extractions. J Am Coll Cardiol. 2010;55:579–86.

    Article  CAS  PubMed  Google Scholar 

  9. Knops RE, Olde Nordkamp LR, De Groot JR, Wilde AA. Two-incision technique for implantation of the subcutaneous implantable cardioverter-defibrillator. Hear Rhythm. 2013;10:1240–3.

    Article  Google Scholar 

  10. Bardy GH, Smith WM, Hood MA, Crozier IG, Melton IC, Jordaens L, et al. An entirely subcutaneous implantable cardioverter-defibrillator. N Engl J Med. 2010;363:36–44. Novel.

    Article  CAS  PubMed  Google Scholar 

  11. Weiss R, Knight BP, Gold MR, Leon AR, Herre JM, Hood M, et al. Safety and efficacy of a totally subcutaneous implantable-cardioverter defibrillator. Circulation. 2013;128:944–53.

    Article  PubMed  Google Scholar 

  12. Olde Nordkamp LR, Dabiri Abkenari L, Boersma LV, Maass AH, De Groot JR, Van Oostrom AJHHM, et al. The entirely subcutaneous implantable cardioverter-defibrillator: initial clinical experience in a large Dutch cohort. J Am Coll Cardiol. 2012;60:1933–9.

    Article  PubMed  Google Scholar 

  13. Jarman JWE, Todd DM. United Kingdom national experience of entirely subcutaneous implantable cardioverter-defibrillator technology: important lessons to learn. Europace. 2013;15:1158–65.

    Article  PubMed  Google Scholar 

  14. Jarman JWE, Lascelles K, Wong T, Markides V, Clague JR, Till J. Clinical experience of entirely subcutaneous implantable cardioverterdefibrillators in children and adults: cause for caution. Eur Heart J. 2012;33:1351–9.

    Article  PubMed  Google Scholar 

  15. Olde Nordkamp LRA, Warnaars JLF, Kooiman KM, de Groot JR, Rosenmöller BRAM, Wilde AAM, et al. Which patients are not suitable for a subcutaneous ICD: incidence and predictors of failed QRS-T-wave morphology screening. J Cardiovasc Electrophysiol. 2014;25:494–9.

    Article  PubMed  Google Scholar 

  16. Kooiman KM, Knops RE, Olde Nordkamp L, Wilde AA M, De Groot JR. Inappropriate subcutaneous implantable cardioverter-defibrillator shocks due to T-wave oversensing can be prevented: implications for management. Hear Rhythm. 2014;11:426–34. Method to improve sensing using the S-ICD.

    Article  Google Scholar 

  17. Lambiase PD, Barr C, Theuns DAMJ, Knops R, Neuzil P, Johansen JB, et al. Worldwide experience with a totally subcutaneous implantable defibrillator: early results from the EFFORTLESS S-ICD registry. Eur Heart J. 2014;35:1657–65.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Acha MR, Milan D. Timing is not right to replace the transvenous implantable cardioverter defibrillator. Circ Arrhythmia Electrophysiol. 2013;6:1246–51.

    Article  Google Scholar 

  19. Spickler JW, Rasor NS, Kezdi P, Misra SN, Robins KE, LeBoeuf C. Totally self-contained intracardiac pacemaker. J Electrocardiol. 1970;3:325–31.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy VY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J, et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation. 2014;129:1466–71. Novel description of a leadless pacemaker in man.

    Article  PubMed  Google Scholar 

  21. Ritter P, Duray GZ, Steinwender C, Soejima K, Omar R, Mont L, et al, Micra Transcatheter Pacing Study Group. Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study. Eur Heart J. 2015. First experience with the Medtronic Micra leadless pacemaker.

  22. Adamson PB, Magalski A, Braunschweig F, Böhm M, Reynolds D, Steinhaus D, et al. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol. 2003;41:565–71.

    Article  PubMed  Google Scholar 

  23. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66. First trial showing benefit for leadless pulmonary artery pressure monitor.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Cooper MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Arrhythmia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkles, J., Cooper, J. The Emerging Roles of Leadless Devices. Curr Treat Options Cardio Med 18, 14 (2016). https://doi.org/10.1007/s11936-015-0424-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0424-8

Keywords

Navigation