Skip to main content

Advertisement

Log in

Multimodal Imaging in Acute Ischemic Stroke

  • Cerebrovascular Disease and Stroke (N Rost, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Recent years have seen the development of novel neuroimaging techniques whose roles in the management of acute stroke are sometimes confusing and controversial. This may be attributable in part to a focus on establishing simplified algorithms and terminology that omit consideration of the basic pathophysiology of cerebral ischemia and, consequently, of the full potential for optimizing patients’ care based upon their individual imaging findings. This review begins by discussing cerebral hemodynamic physiology and of the effects of hemodynamic disturbances upon the brain. Particular attention will be paid to the hemodynamic measurements and markers of tissue injury that are provided by common clinical imaging techniques, with the goal of enabling greater confidence and flexibility in understanding the potential uses of these techniques in various clinical roles, which will be discussed in the remainder of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

• Of importance

  1. Grubb Jr RL, Phelps ME, Raichle ME, Ter-Pogossian MM. The effects of arterial blood pressure on the regional cerebral blood volume by x-ray fluorescence. Stroke. 1973;4:390–9.

    PubMed  Google Scholar 

  2. Powers WJ, Grubb Jr RL, Raichle ME. Physiological responses to focal cerebral ischemia in humans. Ann Neurol. 1984;16:546–52.

    CAS  PubMed  Google Scholar 

  3. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.

    CAS  PubMed  Google Scholar 

  4. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125:595–607.

    PubMed  Google Scholar 

  5. Uemura K, Goto K, Ishii K, Ito Z, Hen R, Kawakami H. Sequential changes of regional circulation in cerebral infarction. Neuroradiology. 1978;16:228–32.

    CAS  PubMed  Google Scholar 

  6. Yasaka M, Read SJ, O’Keefe GJ, Egan GF, Pointon O, McKay WJ, et al. Positron emission tomography in ischaemic stroke: cerebral perfusion and metabolism after stroke onset. J Clin Neurosci: Off J Neurosurg Soc Australas. 1998;5:413–6.

    CAS  Google Scholar 

  7. Marchal G, Young AR, Baron JC. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab. 1999;19:467–82.

    CAS  PubMed  Google Scholar 

  8. Deipolyi AR, Wu O, Macklin EA, Schaefer PW, Schwamm LH, Gonzalez RG, et al. Reliability of cerebral blood volume maps as a substitute for diffusion-weighted imaging in acute ischemic stroke. J Magn Reson Imaging. 2012;36:1083–7. Disconfirmation of the widely-held belief that maps of CBV are equivalent to DWI in identifying the infarct core, including an explanation of one technical artifact that may have helped to perpetuate this misconception.

    PubMed Central  PubMed  Google Scholar 

  9. Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54:773–82.

    CAS  PubMed  Google Scholar 

  10. Astrup J, Siesjo B, Symon L. Thresholds in cerebral ischemia: the ischemic penumbra. Stroke. 1981;12:723–5.

    CAS  PubMed  Google Scholar 

  11. Symon L. The ischemic penumbra – the beginning. In: Donnan GA, Baron JC, Davis SM, Sharp FR, editors. The ischemic penumbra: pathophysiology, imaging and therapy. New York: Informa Healthcare; 2007. p. 1–6.

    Google Scholar 

  12. Blumenfeld H, Varghese GI, Purcaro MJ, Motelow JE, Enev M, McNally KA, et al. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain. 2009;132:999–1012.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Server A, Orheim TE, Graff BA, Josefsen R, Kumar T, Nakstad PH. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology. 2011;53:319–30.

    PubMed  Google Scholar 

  14. Juhler M. Simultaneous determination of regional cerebral blood flow, glucose metabolism, and pH in acute experimental allergic encephalomyelitis. J Cereb Blood Flow Metab. 1987;7:578–84.

    CAS  PubMed  Google Scholar 

  15. Mihara F, Kuwabara Y, Tanaka A, Yoshiura T, Sasaki M, Yoshida T, et al. Reliability of mean transit time obtained using perfusion-weighted MR imaging; comparison with positron emission tomography. Magn Reson Imaging. 2003;21:33–9.

    PubMed  Google Scholar 

  16. Carrera E, Jones PS, Iglesias S, Guadagno JV, Warburton EA, Fryer TD, et al. The vascular mean transit time: a surrogate for the penumbra flow threshold? J Cereb Blood Flow Metab. 2011;31:1027–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Stewart GN. Researches on the circulation time in organs and on the influences which affect it, parts I-III. J Physiol Lond. 1894;15:1–89.

    Google Scholar 

  18. Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41:581–9.

    CAS  PubMed  Google Scholar 

  19. Darby DG, Barber PA, Gerraty RP, Desmond PM, Yang Q, Parsons M, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke. 1999;30:2043–52.

    CAS  PubMed  Google Scholar 

  20. Liu Y, Karonen JO, Vanninen RL, Nuutinen J, Perkio J, Vainio PA, et al. Detecting the subregion proceeding to infarction in hypoperfused cerebral tissue: a study with diffusion and perfusion weighted MRI. Neuroradiology. 2003;45:345–51.

    CAS  PubMed  Google Scholar 

  21. Parsons MW, Pepper EM, Bateman GA, Wang Y, Levi CR. Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology. 2007;68:730–6.

    CAS  PubMed  Google Scholar 

  22. Bivard A, Levi C, Krishnamurthy V, Hislop-Jambrich J, Salazar P, Jackson B, et al. Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion. J Neuroradiol 2014.

  23. van Seeters T, Biessels GJ, Niesten JM, van der Schaaf IC, Dankbaar JW, Horsch AD, et al. Reliability of visual assessment of non-contrast CT, CT angiography source images and CT perfusion in patients with suspected ischemic stroke. PLoS ONE. 2013;8:e75615.

    PubMed Central  PubMed  Google Scholar 

  24. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85.

    PubMed  Google Scholar 

  25. Ghobrial GM, Chalouhi N, Zohra M, Dalyai RT, Ghobrial ML, Rincon F, et al. Saving the ischemic penumbra: endovascular thrombolysis versus medical treatment. J Clin Neurosci: Off J Neurosurg Soc Australas. 2014.

  26. Hyder F, Shulman RG, Rothman DL. A model for the regulation of cerebral oxygen delivery. J Appl Physiol. 1985;85:554–64.

    Google Scholar 

  27. Østergaard L, Jespersen SN, Mouridsen K, Mikkelsen IK, Jonsdottir KY, Tietze A, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab. 2013;33:635–48.

    PubMed Central  PubMed  Google Scholar 

  28. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715–25.

    PubMed  Google Scholar 

  29. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50:164–74.

    PubMed  Google Scholar 

  30. Calamante F, Christensen S, Desmond PM, Ostergaard L, Davis SM, Connelly A. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke. 2010;41:1169–74.

    PubMed  Google Scholar 

  31. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60:508–17.

    PubMed  Google Scholar 

  32. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7:209–309.

    Google Scholar 

  33. Kakuda W, Lansberg MG, Thijs VN, Kemp SM, Bammer R, Wechsler LR, et al. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab. 2008;28:887–91.

    PubMed Central  PubMed  Google Scholar 

  34. Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol. 2012;11:860–7. In this study, IAT was found to improve the outcomes of acute stroke patients with a large mismatch between DWI and Tmax lesion volumes, but did not improve the outcomes of patients without such a mismatch. Because all patients had proximal arterial occlusions, and therefore probably had large Tmax lesions of similar sizes, DEFUSE-2 can be taken as evidence for the hypothesis that IAT is less likely to benefit patients with large infarct cores.

    PubMed Central  PubMed  Google Scholar 

  35. Bivard A, Levi C, Spratt N, Parsons M. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology. 2013;267:543–50.

    PubMed  Google Scholar 

  36. Shih LC, Saver JL, Alger JR, Starkman S, Leary MC, Vinuela F, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke. 2003;34:1425–30.

    PubMed  Google Scholar 

  37. Butcher KS, Parsons M, MacGregor L, Barber PA, Chalk J, Bladin C, et al. Refining the perfusion-diffusion mismatch hypothesis. Stroke. 2005;36:1153–9.

    CAS  PubMed  Google Scholar 

  38. Bivard A, Spratt N, Levi C, Parsons M. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke. Brain. 2011;134:3408–16.

    PubMed  Google Scholar 

  39. Kidwell CS, Wintermark M, De Silva DA, Schaewe TJ, Jahan R, Starkman S, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke. Stroke. 2013;44:73–9.

    PubMed Central  PubMed  Google Scholar 

  40. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013.

  41. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Pierpaoli C, Righini A, Linfante I, Tao-Cheng JH, Alger JR, Di Chiro G. Histopathologic correlates of abnormal water diffusion in cerebral ischemia: diffusion-weighted MR imaging and light and electron microscopic study. Radiology. 1993;189:439–48.

    CAS  PubMed  Google Scholar 

  43. van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT. Water diffusion and acute stroke. Magn Reson Med. 1994;31:154–63.

    PubMed  Google Scholar 

  44. Perkins CJ, Kahya E, Roque CT, Roche PE, Newman GC. Fluid-attenuated inversion recovery and diffusion- and perfusion-weighted MRI abnormalities in 117 consecutive patients with stroke symptoms. Stroke. 2001;32:2774–81.

    CAS  PubMed  Google Scholar 

  45. Urbach H, Flacke S, Keller E, Textor J, Berlis A, Hartmann A, et al. Detectability and detection rate of acute cerebral hemisphere infarcts on CT and diffusion-weighted MRI. Neuroradiology. 2000;42:722–7.

    CAS  PubMed  Google Scholar 

  46. Kelly PJ, Hedley-Whyte ET, Primavera J, He J, Gonzalez RG. Diffusion MRI in ischemic stroke compared to pathologically verified infarction. Neurology. 2001;56:914–20.

    CAS  PubMed  Google Scholar 

  47. Fiebach JB, Schellinger PD, Jansen O, Meyer M, Wilde P, Bender J, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion- weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke. 2002;33:2206–10.

    CAS  PubMed  Google Scholar 

  48. Mullins ME, Schaefer PW, Sorensen AG, Halpern EF, Ay H, He J, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224:353–60.

    PubMed  Google Scholar 

  49. Horowitz SH, Zito JL, Donnarumma R, Patel M, Alvir J. Computed tomographic-angiographic findings within the first five hours of cerebral infarction. Stroke. 1991;22:1245–53.

    CAS  PubMed  Google Scholar 

  50. von Kummer R, Holle R, Grzyska U, Hoffman H, Jansen O, Petersen D, et al. Interobserver agreement in assessing early CT signs of middle cerebral artery infarction. AJNR Am J Neuroradiol. 1996;17:1743–8.

    Google Scholar 

  51. Gonzalez RG, Schaefer PW, Buonanno FS, Schwamm LH, Budzik RF, Rordorf G, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210:155–62.

    CAS  PubMed  Google Scholar 

  52. Wardlaw JM, Dorman PJ, Lewis SC, Sandercock PAG. Can stroke physicians and neuroradiologists identify signs of early cerebral infarction on CT? J Neurol Neurosurg Psychiatry. 1999;67:651–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, et al. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. Cochrane Database Syst Rev. 2009:CD007424.

  54. Mullins ME, Lev MH, Schellingerhout D, Koroshetz WJ, Gonzalez RG. Influence of availability of clinical history on detection of early stroke using unenhanced CT and diffusion-weighted MR imaging. AJR Am J Roentgenol. 2002;179:223–8.

    PubMed  Google Scholar 

  55. Lev MH, Farkas J, Gemmete JJ, Hossain ST, Hunter GJ, Koroshetz WJ, et al. Acute stroke: improved nonenhanced CT detection–benefits of soft-copy interpretation by using variable window width and center level settings. Radiology. 1999;213:150–5.

    CAS  PubMed  Google Scholar 

  56. Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292:1823–30.

    CAS  PubMed  Google Scholar 

  57. Ginde AA, Foianini A, Renner DM, Valley M, Camargo Jr CA. Availability and quality of computed tomography and magnetic resonance imaging equipment in u.S. Emergency departments. Acad Emerg Med. 2008;15:780–3.

    PubMed  Google Scholar 

  58. NINDS rt-PA Study Group. Tissue plasminogen activator for acute ischemic stroke. The national institute of neurological disorders and stroke rt-PA stroke study group. N Engl J Med. 1995;333:1581–7.

    Google Scholar 

  59. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.

    CAS  PubMed  Google Scholar 

  60. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, Atlantis, NINDS, and EPITHET trials. Lancet. 2010;375:1695–703.

    CAS  PubMed  Google Scholar 

  61. Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, et al. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA. 2013;309:2480–8.

    CAS  PubMed  Google Scholar 

  62. Lansberg MG, Albers GW, Beaulieu C, Marks MP. Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology. 2000;54:1557–61.

    CAS  PubMed  Google Scholar 

  63. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369:293–8.

    PubMed Central  PubMed  Google Scholar 

  64. Hwang DY, Silva GS, Furie KL, Greer DM. Comparative sensitivity of computed tomography vs. Magnetic resonance imaging for detecting acute posterior fossa infarct. J Emerg Med. 2012;42:559–65.

    PubMed Central  PubMed  Google Scholar 

  65. Lev MH, Farkas J, Rodriguez VR, Schwamm LH, Hunter GJ, Putman CM, et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001;25:520–8.

    CAS  PubMed  Google Scholar 

  66. Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol. 2005;26:1012–21.

    PubMed  Google Scholar 

  67. Tomanek AI, Coutts SB, Demchuk AM, Hudon ME, Morrish WE, Sevick RJ, et al. MR angiography compared to conventional selective angiography in acute stroke. Can J Neurol Sci. 2006;33:58–62.

    PubMed  Google Scholar 

  68. Olivot JM, Mosimann PJ, Labreuche J, Inoue M, Meseguer E, Desilles JP, et al. Impact of diffusion-weighted imaging lesion volume on the success of endovascular reperfusion therapy. Stroke. 2013;44:2205–11.

    PubMed  Google Scholar 

  69. Sanak D, Nosal V, Horák D, Bártková A, Zelenák K, Herzig R, et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology. 2006;48:632–9.

    PubMed  Google Scholar 

  70. Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, González RG. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke. 2009;40:2046–54.

    PubMed Central  PubMed  Google Scholar 

  71. Yoo AJ, Barak ER, Copen WA, Kamalian S, Gharai LR, Pervez MA, et al. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with national institutes of health stroke scale score improves the prediction of acute stroke outcome. Stroke. 2010;41:1728–35.

    PubMed  Google Scholar 

  72. Mlynash M, Lansberg MG, De Silva DA, Lee J, Christensen S, Straka M, et al. Refining the definition of the malignant profile: Insights from the DEFUSE-EPITHET pooled data set. Stroke. 2011;42:1270–5.

    PubMed Central  PubMed  Google Scholar 

  73. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47:462–9.

    CAS  PubMed  Google Scholar 

  74. Grant PE, He J, Halpern EF, Wu O, Schaefer PW, Schwamm LH, et al. Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology. 2001;221:43–50.

    CAS  PubMed  Google Scholar 

  75. Parsons MW, Barber PA, Chalk J, Darby DG, Rose S, Desmond PM, et al. Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol. 2002;51:28–37.

    PubMed  Google Scholar 

  76. Kidwell CS, Saver JL, Starkman S, Duckwiler G, Jahan R, Vespa P, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol. 2002;52:698–703.

    PubMed  Google Scholar 

  77. Campbell BC, Purushotham A, Christensen S, Desmond PM, Nagakane Y, Parsons MW, et al. The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab. 2012;32:50–6.

    PubMed Central  PubMed  Google Scholar 

  78. Schaefer PW, Ozsunar Y, He J, Hamberg LM, Hunter GJ, Sorensen AG, et al. Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol. 2003;24:436–43.

    PubMed  Google Scholar 

  79. Schaefer PW, Barak ER, Kamalian S, Gharai LR, Schwamm L, Gonzalez RG, et al. Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke. 2008;39:2986–92.

    PubMed  Google Scholar 

  80. Furtado AD, Lau BC, Vittinghoff E, Dillon WP, Smith WS, Rigby T, et al. Optimal brain perfusion CT coverage in patients with acute middle cerebral artery stroke. AJNR Am J Neuroradiol. 2010;31:691–5.

    CAS  PubMed  Google Scholar 

  81. Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM, et al. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke. 2011;42:3435–40.

    PubMed  Google Scholar 

  82. Bivard A, McElduff P, Spratt N, Levi C, Parsons M. Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc Dis. 2011;31:238–45.

    PubMed  Google Scholar 

  83. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366:1099–107.

    CAS  PubMed  Google Scholar 

  84. Jauch EC, Saver JL, Adams Jr HP, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947.

    PubMed  Google Scholar 

  85. Thierfelder KM, von Baumgarten L, Baumann AB, Meinel FG, Helck AD, Opherk C, et al. Penumbra pattern assessment in acute stroke patients: comparison of quantitative and non-quantitative methods in whole brain CT perfusion. PLoS ONE. 2014;9:e105413.

    PubMed Central  PubMed  Google Scholar 

  86. Saake M, Breuer L, Golitz P, Kohrmann M, Schwab S, Dorfler A, et al. Clinical/perfusion CT CBV mismatch as prognostic factor in intraarterial thrombectomy in acute anterior circulation stroke. Clin Neurol Neurosurg. 2014;121:39–45.

    PubMed  Google Scholar 

  87. Westgard JO, Hunt MR. Use and interpretation of common statistical tests in method-comparison studies. Clin Chem. 1973;19:49–57.

    CAS  PubMed  Google Scholar 

  88. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    CAS  PubMed  Google Scholar 

  89. Coutts SB, Simon JE, Tomanek AI, Barber PA, Chan J, Hudon ME, et al. Reliability of assessing percentage of diffusion-perfusion mismatch. Stroke. 2003;34:1681–3.

    PubMed  Google Scholar 

  90. Ay H, Koroshetz WJ, Vangel M, Benner T, Melinosky C, Zhu M, et al. Conversion of ischemic brain tissue into infarction increases with age. Stroke. 2005;36:2632–6.

    PubMed  Google Scholar 

  91. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, et al. The desmoteplase in acute ischemic stroke trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005;36:66–73.

    CAS  PubMed  Google Scholar 

  92. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, et al. Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006;37:1227–31.

    CAS  PubMed  Google Scholar 

  93. Copen WA, Rezai Gharai L, Barak ER, Schwamm LH, Wu O, Kamalian S, et al. Existence of the diffusion-perfusion mismatch within 24 hours after onset of acute stroke: dependence on proximal arterial occlusion. Radiology. 2009;250:878–86.

    PubMed  Google Scholar 

  94. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009;8:141–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Hakimelahi R, Yoo AJ, He J, Schwamm LH, Lev MH, Schaefer PW, et al. Rapid identification of a major diffusion/perfusion mismatch in distal internal carotid artery or middle cerebral artery ischemic stroke. BMC Neurol. 2012;12:132.

    PubMed Central  PubMed  Google Scholar 

  96. Nagakane Y, Christensen S, Brekenfeld C, Ma H, Churilov L, Parsons MW, et al. EPITHET: positive result after reanalysis using baseline diffusion-weighted imaging/perfusion-weighted imaging co-registration. Stroke. 2011;42:59–64.

    PubMed  Google Scholar 

  97. Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40:469–75.

    PubMed Central  PubMed  Google Scholar 

  98. Takasawa M, Jones PS, Guadagno JV, Christensen S, Fryer TD, Harding S, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative pet. Stroke. 2008;39:870–7.

    PubMed  Google Scholar 

  99. Zaro-Weber O, Moeller-Hartmann W, Heiss WD, Sobesky J. Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke. 2010;41:2817–21.

    PubMed  Google Scholar 

  100. Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA. Blood pressure and clinical outcomes in the international stroke trial. Stroke. 2002;33:1315–20.

    PubMed  Google Scholar 

  101. Mistri AK, Robinson TG, Potter JF. Pressor therapy in acute ischemic stroke: systematic review. Stroke. 2006;37:1565–71.

    PubMed  Google Scholar 

  102. Rubin G, Firlik AD, Levy EI, Pindzola RR, Yonas H. Xenon-enhanced computed tomography cerebral blood flow measurements in acute cerebral ischemia: review of 56 cases. J Stroke Cerebrovasc Dis. 1999;8:404–11.

    CAS  PubMed  Google Scholar 

  103. Hakim AM, Pokrupa RP, Villanueva J, Diksic M, Evans AC, Thompson CJ, et al. The effect of spontaneous reperfusion on metabolic function in early human cerebral infarcts. Ann Neurol. 1987;21:279–89.

    CAS  PubMed  Google Scholar 

  104. Jorgensen HS, Sperling B, Nakayama H, Raaschou HO, Olsen TS. Spontaneous reperfusion of cerebral infarcts in patients with acute stroke. Incidence, time course, and clinical outcome in the Copenhagen stroke study. Arch Neurol. 1994;51:865–73.

    CAS  PubMed  Google Scholar 

  105. Bowler JV, Wade JP, Jones BE, Nijran KS, Steiner TJ. Natural history of the spontaneous reperfusion of human cerebral infarcts as assessed by 99mtc hmpao spect. J Neurol Neurosurg Psychiatry. 1998;64:90–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Gilligan AK, Markus R, Read S, Srikanth V, Hirano T, Fitt G, et al. Baseline blood pressure but not early computed tomography changes predicts major hemorrhage after streptokinase in acute ischemic stroke. Stroke. 2002;33:2236–42.

    CAS  PubMed  Google Scholar 

  107. Menon BK, Saver JL, Prabhakaran S, Reeves M, Liang L, Olson DM, et al. Risk score for intracranial hemorrhage in patients with acute ischemic stroke treated with intravenous tissue-type plasminogen activator. Stroke. 2012;43:2293–9.

    CAS  PubMed  Google Scholar 

  108. Grape S, Ravussin P. Pro: osmotherapy for the treatment of acute intracranial hypertension. J Neurosurg Anesthesiol. 2012;24:402–6.

    PubMed  Google Scholar 

  109. Grande PO, Romner B. Osmotherapy in brain edema: a questionable therapy. J Neurosurg Anesthesiol. 2012;24:407–12.

    PubMed  Google Scholar 

  110. Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, et al. A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke. 2005;36:797–802.

    PubMed  Google Scholar 

  111. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14.

    CAS  PubMed  Google Scholar 

  112. Ay H, Oliveira-Filho J, Buonanno FS, Schaefer PW, Furie KL, Chang YC, et al. ‘Footprints’ of transient ischemic attacks: a diffusion-weighted MRI study. Cerebrovasc Dis. 2002;14:177–86.

    PubMed  Google Scholar 

  113. Kidwell CS, Alger JR, Di Salle F, Starkman S, Villablanca P, Bentson J, et al. Diffusion MRI in patients with transient ischemic attacks. Stroke. 1999;30:1174–80.

    CAS  PubMed  Google Scholar 

  114. Rovira A, Rovira-Gols A, Pedraza S, Grive E, Molina C, Alvarez-Sabin J. Diffusion-weighted MR imaging in the acute phase of transient ischemic attacks. AJNR Am J Neuroradiol. 2002;23:77–83.

    PubMed  Google Scholar 

  115. Inatomi Y, Kimura K, Yonehara T, Fujioka S, Uchino M. DWI abnormalities and clinical characteristics in TIA patients. Neurology. 2004;62:376–80.

    CAS  PubMed  Google Scholar 

  116. Lamy C, Oppenheim C, Calvet D, Domigo V, Naggara O, Meder JL, et al. Diffusion-weighted MR imaging in transient ischaemic attacks. Eur Radiol. 2006;16:1090–5.

    CAS  PubMed  Google Scholar 

  117. Restrepo L, Jacobs MA, Barker PB, Wityk RJ. Assessment of transient ischemic attack with diffusion- and perfusion-weighted imaging. AJNR Am J Neuroradiol. 2004;25:1645–52.

    PubMed  Google Scholar 

  118. Krol AL, Coutts SB, Simon JE, Hill MD, Sohn CH, Demchuk AM, et al. Perfusion MRI abnormalities in speech or motor transient ischemic attack patients. Stroke. 2005;36:2487–9.

    PubMed  Google Scholar 

  119. Mlynash M, Olivot JM, Tong DC, Lansberg MG, Eyngorn I, Kemp S, et al. Yield of combined perfusion and diffusion MR imaging in hemispheric TIA. Neurology. 2009;72:1127–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Gonzalez RG, Copen WA, Schaefer PW, Lev MH, Pomerantz SR, Rapalino O, et al. The massachusetts general hospital acute stroke imaging algorithm: an experience and evidence based approach. J NeuroIntervent Surg. 2013;5 Suppl 1:i7–12.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. William Copen declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not report any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Copen MD.

Additional information

This article is part of the Topical Collection on Cerebrovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copen, W.A. Multimodal Imaging in Acute Ischemic Stroke. Curr Treat Options Cardio Med 17, 10 (2015). https://doi.org/10.1007/s11936-015-0368-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0368-z

Keywords

Navigation