Skip to main content
Log in

Novel Technologies in Urologic Surgery: a Rapidly Changing Scenario

  • Urosurgery (J Collins, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The introduction of laparoscopy and robotic surgery revolutionized the surgical management of urologic patients. Nonetheless, we live in an era of rapid changes, and we are probably still in the infancy of technology applied to surgery. When considering currently available technologies, there are several unmet needs to be addressed. These include the application of augmented reality, haptic feedback, tissue recognition, distant remote control, miniaturization of surgical instruments, the learning curve typical of the introduction of novel techniques, and excessive costs. In the next few years, evolution in imaging modalities in pre- and intraoperative surgical planning, as well as the introduction of novel minimally invasive platforms, would in part address these issues, substantially improving surgical outcomes. In addition, validated training programs would allow for the safe implementation of novel techniques in the clinical practice. Finally, a reduction in costs would be necessary to make technology affordable and to optimize healthcare resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cathelineau X, Sanchez-Salas R, Sivaraman A. What is next in robotic urology? Curr Urol Rep. 2014;15:460.

    Article  PubMed  Google Scholar 

  2. Lendvay TS, Hannaford B, Satava RM. Future of robotic surgery. Cancer J. 2013;19:109–19.

    Article  PubMed  Google Scholar 

  3. Sivaraman A, Sanchez-Salas R, Prapotnich D, et al. Robotics in urological surgery: evolution, current status and future perspectives. Actas Urol Esp. 2015;39:435–41.

    Article  CAS  PubMed  Google Scholar 

  4. Clayman RV, Kavoussi LR, Soper NJ, et al. Laparoscopic nephrectomy: initial case report. J Urol. 1991;146:278–82.

    CAS  PubMed  Google Scholar 

  5. Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67:913–24.

    Article  PubMed  Google Scholar 

  6. Poon SA, Silberstein JL, Chen LY, Ehdaie B, Kim PH, Russo P. Trends in partial and radical nephrectomy: an analysis of case logs from certifying urologists. J Urol. 2013;190:464–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Abbou CC, Salomon L, Hoznek A, et al. Laparoscopic radical prostatectomy: preliminary results. Urology. 2000;55:630–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ficarra V, Novara G, Artibani W, et al. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55:1037–63.

    Article  PubMed  Google Scholar 

  9. Vickers AJ, Savage CJ, Hruza M, et al. The surgical learning curve for laparoscopic radical prostatectomy: a retrospective cohort study. Lancet Oncol. 2009;10:475–80.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gandaglia G, Montorsi F, Karakiewicz PI, Sun M. Robot-assisted radical prostatectomy in prostate cancer. Future Oncol. 2015;11:2767–73.

    Article  CAS  PubMed  Google Scholar 

  11. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10.

    Article  CAS  PubMed  Google Scholar 

  12. Abbou CC, Hoznek A, Salomon L, et al. Remote laparoscopic radical prostatectomy carried out with a robot. Report of a case. Prog Urol. 2000;10:520–3.

    CAS  PubMed  Google Scholar 

  13. Diaz M, Peabody JO, Kapoor V, et al. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur Urol. 2015;67:1168–76. This study describes the long-term oncologic outcomes of robot-assisted radical prostatectomy, supporting its safety in terms of recurrence and cancer-specific survival.

    Article  PubMed  Google Scholar 

  14. Gandaglia G, Sammon JD, Chang SL, et al. Comparative effectiveness of robot-assisted and open radical prostatectomy in the postdissemination era. J Clin Oncol. 2014;32:1419–26.

    Article  PubMed  Google Scholar 

  15. Gandaglia G, Trinh QD. Models of assessment of comparative outcomes of robot-assisted surgery: best evidence regarding the superiority or inferiority of robot-assisted radical prostatectomy. Urol Clin N Am. 2014;41:597–606.

    Article  Google Scholar 

  16. Gandaglia G, Suardi N, Gallina A, et al. How to optimize patient selection for robot-assisted radical prostatectomy: functional outcome analyses from a tertiary referral center. J Endourol. 2014;28:792–800.

    Article  PubMed  Google Scholar 

  17. Ficarra V, Novara G, Rosen RC, et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol. 2012;62:405–17.

    Article  PubMed  Google Scholar 

  18. Ficarra V, Novara G, Ahlering TE, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62:418–30.

    Article  PubMed  Google Scholar 

  19. Hu JC, Gandaglia G, Karakiewicz PI, et al. Comparative effectiveness of robot-assisted versus open radical prostatectomy cancer control. Eur Urol. 2014;66:666–72.

    Article  PubMed  Google Scholar 

  20. Gandaglia G, Abdollah F, Hu J, et al. Is robot-assisted radical prostatectomy safe in men with high-risk prostate cancer? Assessment of perioperative outcomes, positive surgical margins, and use of additional cancer treatments. J Endourol. 2014;28:784–91.

    Article  PubMed  Google Scholar 

  21. Suardi N, DellOglio P, Gallina A, et al. Evaluation of positive surgical margins in patients undergoing robot-assisted and open radical prostatectomy according to preoperative risk groups. Urol Oncol. 2015 Sep 28.

  22. Aboumarzouk OM, Stein RJ, Eyraud R, et al. Robotic versus laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol. 2012;62:1023–33.

    Article  PubMed  Google Scholar 

  23. Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V. Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol. 2010;58:127–32.

    Article  PubMed  Google Scholar 

  24. Menon M, Hemal AK, Tewari A, et al. Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int. 2003;92:232–6.

    Article  CAS  PubMed  Google Scholar 

  25. Leow JJ, Reese SW, Jiang W, et al. Propensity-matched comparison of morbidity and costs of open and robot-assisted radical cystectomies: a contemporary population-based analysis in the United States. Eur Urol. 2014;66:569–76.

    Article  PubMed  Google Scholar 

  26. Hughes-Hallett A, Mayer EK, Marcus HJ, et al. Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology. 2014;83:266–73.

    Article  PubMed  Google Scholar 

  27. Alenezi AN, Karim O. Role of intra-operative contrast-enhanced ultrasound (CEUS) in robotic-assisted nephron-sparing surgery. J Robot Surg. 2015;9:1–10.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hughes-Hallett A, Pratt P, Mayer E, et al. Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical experience. Eur Urol. 2014;65:671–2.

    Article  PubMed  Google Scholar 

  29. Meccariello G, Faedi F, AlGhamdi S, et al. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? J Robot Surg. 2015 Nov 11.

  30. Gettman MT, Box G, Averch T, et al. Consensus statement on natural orifice transluminal endoscopic surgery and single-incision laparoscopic surgery: heralding a new era in urology? Eur Urol. 2008;53:1117–20.

    Article  PubMed  Google Scholar 

  31. http://ec.europa.eu/programmes/horizon2020/en/news/tiny-robots-less-invasive-surgery. Accessed on November 15th 2015.

  32. Nguan C, Miller B, Patel R, Luke PP, Schlachta CM. Pre-clinical remote telesurgery trial of a da Vinci telesurgery prototype. Int J Med Robot. 2008;4:304–9.

    Article  PubMed  Google Scholar 

  33. Mottrie A, Novara G, Van der Poel H, Dasgupta P, Montorsi F, Gandaglia G. The European Association of Urology robotic training curriculum: an update. Eur Urol Focus. 2015.

  34. Volpe A, Ahmed K, Dasgupta P, et al. Pilot validation study of the European Association of Urology robotic training curriculum. Eur Urol. 2015;68:292–9. This study demonstrates that a 12-week training program allows surgeons with limited robotic experience to perform a robot-assisted radical prostatectomy in a safe and efficient manner.

    Article  PubMed  Google Scholar 

  35. Fisher RA, Dasgupta P, Mottrie A, et al. An over-view of robot assisted surgery curricula and the status of their validation. Int J Surg. 2015;13:115–23.

    Article  PubMed  Google Scholar 

  36. Basto M, Sathianathen N, Te Marvelde L, et al. Patterns-of-care and health economic analysis of robot-assisted radical prostatectomy in the Australian public health system. BJU Int. 2015 Sep 9. This study analyzes the uptake of robotic surgery in the Australian healthcare system and how to decrease the costs associated with this procedure.

  37. Richstone L, Kavoussi LR. Barriers to the diffusion of advanced surgical techniques. Cancer. 2008;112:1646–9.

    Article  PubMed  Google Scholar 

  38. Tandogdu Z, Vale L, Fraser C, Ramsay C. A systematic review of economic evaluations of the use of robotic assisted laparoscopy in surgery compared with open or laparoscopic surgery. Appl Health Econ Health Policy. 2015;13:457–67.

    Article  PubMed  Google Scholar 

  39. Close A, Robertson C, Rushton S, et al. Comparative cost-effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of men with localised prostate cancer: a health technology assessment from the perspective of the UK National Health Service. Eur Urol. 2013;64:361–9.

    Article  PubMed  Google Scholar 

  40. Lasser MS, Doscher M, Keehn A, Chernyak V, Garfein E, Ghavamian R. Virtual surgical planning: a novel aid to robot-assisted laparoscopic partial nephrectomy. J Endourol. 2012;26:1372–9.

    Article  PubMed  Google Scholar 

  41. Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. Eur Urol. 2012;61:211–7. This article demonstrates that preoperative surgical planning using tridimensional reconstruction facilitates zero ischemia robot-assisted partial nephrectomy.

    Article  PubMed  Google Scholar 

  42. Dixon BJ, Daly MJ, Chan H, Vescan AD, Witterick IJ, Irish JC. Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg Endosc. 2013;27:454–61.

    Article  PubMed  Google Scholar 

  43. Kaczmarek BF, Sukumar S, Petros F, et al. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: initial series and outcomes. Int J Urol. 2013;20:172–6. This study shows that intraoperative ultrasound imaging during robot-assisted partial nephrectomy allows for optimization of tumor identification.

    Article  PubMed  Google Scholar 

  44. Assimos DG, Boyce H, Woodruff RD, Harrison LH, McCullough DL, Kroovand RL. Intraoperative renal ultrasonography: a useful adjunct to partial nephrectomy. J Urol. 1991;146:1218–20.

    CAS  PubMed  Google Scholar 

  45. Shoji S, Aron M, de Castro Abreu AL, et al. Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol. 2014;21:736–9.

    Article  PubMed  Google Scholar 

  46. Vora AA, Dajani D, Lynch JH, Kowalczyk KJ. Anatomic and technical considerations for optimizing recovery of urinary function during robotic-assisted radical prostatectomy. Curr Opin Urol. 2013;23:78–87.

    Article  PubMed  Google Scholar 

  47. Bjurlin MA, McClintock TR, Stifelman MD. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for robotic partial nephrectomy. Curr Urol Rep. 2015;16:20.

    Article  PubMed  Google Scholar 

  48. Bjurlin MA, Gan M, McClintock TR, et al. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol. 2014;65:793–801. This study shows that near-infrared fluorescence imaging provides real time intraoperative angiogram to confirm selective ischemia and/or tissue perfusion during robot-assisted partial nephrectomy or upper urinary tract surgery.

    Article  PubMed  Google Scholar 

  49. KleinJan GH, van den Berg NS, Brouwer OR, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66:991–8. This study shows that intraoperative fluorescence-based sentinel node dissection can facilitate the identification of the node and increase the potential clinical relevance of this approach in prostate cancer patients.

    Article  PubMed  Google Scholar 

  50. McClintock TR, Bjurlin MA, Wysock JS, et al. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology. 2014;84:327–32.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol. 2014;65:1162–8.

    Article  PubMed  Google Scholar 

  52. Tobis S, Knopf JK, Silvers CR, et al. Near infrared fluorescence imaging after intravenous indocyanine green: initial clinical experience with open partial nephrectomy for renal cortical tumors. Urology. 2012;79:958–64.

    Article  PubMed  Google Scholar 

  53. Autorino R, Zargar H, White WM, et al. Current applications of near-infrared fluorescence imaging in robotic urologic surgery: a systematic review and critical analysis of the literature. Urology. 2014;84:751–9.

    Article  PubMed  Google Scholar 

  54. Desai MM, de Castro Abreu AL, Leslie S, et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol. 2014;66:713–9.

    Article  PubMed  Google Scholar 

  55. Lee Z, Simhan J, Parker DC, et al. Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy. Urology. 2013;82:729–33.

    Article  PubMed  Google Scholar 

  56. Brouwer OR, van den Berg NS, Matheron HM, et al. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65:600–9.

    Article  CAS  PubMed  Google Scholar 

  57. Leijte JA, Valdes Olmos RA, Nieweg OE, Horenblas S. Anatomical mapping of lymphatic drainage in penile carcinoma with SPECT-CT: implications for the extent of inguinal lymph node dissection. Eur Urol. 2008;54:885–90.

    Article  PubMed  Google Scholar 

  58. Morgan M, Olweny EO, Cadeddu JA. LESS and NOTES instrumentation: future. Curr Opin Urol. 2014;24:58–65.

    Article  PubMed  Google Scholar 

  59. Hirano D, Minei S, Yamaguchi K, et al. Retroperitoneoscopic adrenalectomy for adrenal tumors via a single large port. J Endourol. 2005;19:788–92.

    Article  PubMed  Google Scholar 

  60. Samarasekera D, Kaouk JH. Robotic single port surgery: current status and future considerations. Indian J Urol. 2014;30:326–32.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Autorino R, Cadeddu JA, Desai MM, et al. Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature. Eur Urol. 2011;59:26–45.

    Article  PubMed  Google Scholar 

  62. Rane A, Autorino R. Robotic natural orifice translumenal endoscopic surgery and laparoendoscopic single-site surgery: current status. Curr Opin Urol. 2011;21:71–7.

    Article  PubMed  Google Scholar 

  63. Cestari A, Buffi NM, Lista G, et al. Feasibility and preliminary clinical outcomes of robotic laparoendoscopic single-site (R-LESS) pyeloplasty using a new single-port platform. Eur Urol. 2012;62:175–9. This study shows the safety and feasibility of robot-assisted single-site pyeloplasty using a novel platform.

    Article  PubMed  Google Scholar 

  64. Petroni G, Niccolini M, Menciassi A, Dario P, Cuschieri A. A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc. 2013;27:665–70.

    Article  PubMed  Google Scholar 

  65. Lehman AC, Wood NA, Farritor S, Goede MR, Oleynikov D. Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc. 2011;25:119–23.

    Article  PubMed  Google Scholar 

  66. Kaouk JH, Haber GP, Autorino R, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66:1033–43.

    Article  PubMed  Google Scholar 

  67. Gettman MT, Lotan Y, Napper CA, Cadeddu JA. Transvaginal laparoscopic nephrectomy: development and feasibility in the porcine model. Urology. 2002;59:446–50.

    Article  PubMed  Google Scholar 

  68. Branco AW, Branco Filho AJ, Kondo W, et al. Hybrid transvaginal nephrectomy. Eur Urol. 2008;53:1290–4.

    Article  PubMed  Google Scholar 

  69. Tyson MD, Humphreys MR. Urological applications of natural orifice transluminal endoscopic surgery (NOTES). Nat Rev Urol. 2014;11:324–32.

    Article  PubMed  Google Scholar 

  70. Wood SG, Panait L, Duffy AJ, Bell RL, Roberts KE. Complications of transvaginal natural orifice transluminal endoscopic surgery: a series of 102 patients. Ann Surg. 2014;259:744–9.

    Article  PubMed  Google Scholar 

  71. Canes D, Lehman AC, Farritor SM, Oleynikov D, Desai MM. The future of NOTES instrumentation: flexible robotics and in vivo minirobots. J Endourol. 2009;23:787–92.

    Article  PubMed  Google Scholar 

  72. Laydner H, Autorino R, Isac W, et al. Robotic retroperitoneal transvaginal natural orifice translumenal endoscopic surgery (NOTES) nephrectomy: feasibility study in a cadaver model. Urology. 2013;81:1232–7.

    Article  PubMed  Google Scholar 

  73. Bozzini G, Gidaro S, Taverna G. Robot-assisted laparoscopic partial nephrectomy with the ALF-X robot on pig models. Eur Urol. 2015 Sep 7. This preclinical study demonstrates the feasibility of partial nephrectomy using a novel robotic platform.

  74. Falavolti C, Gidaro S, Ruiz E, et al. Experimental nephrectomies using a novel telesurgical system: (the Telelap ALF-X)—a pilot study. Surg Technol Int. 2014;25:37–41.

    PubMed  Google Scholar 

  75. Saglam R, Muslumanoglu AY, Tokatli Z, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1–2b). Eur Urol. 2014;66:1092–100.

    Article  PubMed  Google Scholar 

  76. Gueli Alletti S, Rossitto C, Fanfani F, et al. Telelap Alf-X-assisted laparoscopy for ovarian cyst enucleation: report of the first 10 cases. J Minim Invasive Gynecol. 2015;22:1079–83.

    Article  PubMed  Google Scholar 

  77. Fanfani F, Restaino S, Gueli Alletti S, et al. TELELAP ALF-X robotic-assisted laparoscopic hysterectomy: feasibility and perioperative outcomes. J Minim Invasive Gynecol. 2015;22:1011–7.

    Article  PubMed  Google Scholar 

  78. Mmeje CO, Martin AD, Nunez-Nateras R, Parker AS, Thiel DD, Castle EP. Cost analysis of open radical cystectomy versus robot-assisted radical cystectomy. Curr Urol Rep. 2013;14:26–31.

    Article  PubMed  Google Scholar 

  79. Williams SB, Prado K, Hu JC. Economics of robotic surgery: does it make sense and for whom? Urol Clin N Am. 2014;41:591–6.

    Article  Google Scholar 

  80. Bolenz C, Gupta A, Hotze T, et al. Cost comparison of robotic, laparoscopic, and open radical prostatectomy for prostate cancer. Eur Urol. 2010;57:453–8. This investigation systematically analyzes and compares costs of robotic vs. laparoscopic vs. open radical prostatectomy in patients with prostate cancer.

    Article  PubMed  Google Scholar 

  81. Bochner BH, Dalbagni G, Sjoberg DD, et al. Comparing open radical cystectomy and robot-assisted laparoscopic radical cystectomy: a randomized clinical trial. Eur Urol. 2015;67:1042–50.

    Article  PubMed  Google Scholar 

  82. Mir SA, Cadeddu JA, Sleeper JP, Lotan Y. Cost comparison of robotic, laparoscopic, and open partial nephrectomy. J Endourol. 2011;25:447–53.

    Article  PubMed  Google Scholar 

  83. Bolenz C, Freedland SJ, Hollenbeck BK, et al. Costs of radical prostatectomy for prostate cancer: a systematic review. Eur Urol. 2014;65:316–24.

    Article  PubMed  Google Scholar 

  84. Delto JC, Wayne G, Yanes R, Nieder AM, Bhandari A. Reducing robotic prostatectomy costs by minimizing instrumentation. J Endourol. 2015;29:556–60. This study demonstrates how the optimization of the surgical instruments might result in a reduction by 40 % of the costs associated with robotic surgery.

    Article  PubMed  Google Scholar 

  85. Williams SB, Amarasekera CA, Gu X, et al. Influence of surgeon and hospital volume on radical prostatectomy costs. J Urol. 2012;188:2198–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Mottrie.

Ethics declarations

Conflict of Interest

Giorgio Gandaglia, Peter Schatteman, Geert De Naeyer, Frederiek D’Hondt, and Alexandre Mottrie each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Urosurgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandaglia, G., Schatteman, P., De Naeyer, G. et al. Novel Technologies in Urologic Surgery: a Rapidly Changing Scenario. Curr Urol Rep 17, 19 (2016). https://doi.org/10.1007/s11934-016-0577-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-016-0577-3

Keywords

Navigation