Skip to main content

Advertisement

Log in

Predictors of Transition to Psychosis in Individuals at Clinical High Risk

  • Precision Medicine in Psychiatry (S Kennedy, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Current research is examining predictors of the transition to psychosis in youth who are at clinical high risk based on attenuated psychotic symptoms (APS). Determining predictors of the development of psychosis is important for an improved understanding of mechanisms as well as the development of preventative strategies. The purpose is to review the most recent literature identifying predictors of the transition to psychosis in those who are already assessed as being at risk.

Recent Findings

Multidomain models, in particular, integrated models of symptoms, social functioning, and cognition variables, achieve better predictive performance than individual factors. There are many methodological issues; however, several solutions have now been described in the literature.

Summary

For youth who already have APS, predicting who may go on to later develop psychosis is possible. Several studies are underway in large consortiums that may overcome some of the methodological concerns and develop improved means of prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. McGlashan T, Walsh B, Woods S. The psychosis-risk syndrome: handbook for diagnosis and follow-up: Oxford University Press; 2010.

  2. AR Y, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell’Olio M, et al. Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N Z J Psychiatry. 2005;39(11–12):964–71. https://doi.org/10.1080/j.1440-1614.2005.01714.x.

    Article  Google Scholar 

  3. Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, et al. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69(3):220–9. https://doi.org/10.1001/archgenpsychiatry.2011.1472.

    Article  PubMed  Google Scholar 

  4. Cannon TD, Cadenhead K, Cornblatt B, Woods SW, Addington J, Walker E, et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry. 2008;65(1):28–37. https://doi.org/10.1001/archgenpsychiatry.2007.3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Os J. Does the urban environment cause psychosis? Br J Psychiatry. 2004;184:287–8.

    Article  Google Scholar 

  6. Janssen I, Hanssen M, Bak M, Bijl RV, De Graff R, Vollebergh W, et al. Discrimination and delusional ideation. Br J Psychiatry. 2003;182:71–6.

    Article  CAS  Google Scholar 

  7. Van Der Ven E, Dalman C, Wicks S, Allebeck P, Magnusson C, Van Os J, et al. Testing Ødegaard’s selective migration hypothesis: a longitudinal cohort study of risk factors for non-affective psychotic disorders among prospective emigrants. Psychol Med. 2015;45(4):727–34. https://doi.org/10.1017/S0033291714001780.

    Article  PubMed  Google Scholar 

  8. van Winkel R, van Nierop M, Myin-Germeys I, van Os J. Childhood trauma as a cause of psychosis: linking genes, psychology, and biology. Can J Psychiatry. 2013;58(1):44–51. https://doi.org/10.1177/070674371305800109.

    Article  PubMed  Google Scholar 

  9. Nielsen SM, Toftdahl NG, Nordentoft M, Hjorthøj C. Association between alcohol, cannabis, and other illicit substance abuse and risk of developing schizophrenia: a nationwide population based register study. Psychol Med. 2017;47(09):1668–77. https://doi.org/10.1017/S0033291717000162.

    Article  CAS  PubMed  Google Scholar 

  10. Saleem MM, Stowkowy J, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, et al. Perceived discrimination in those at clinical high risk for psychosis. Early Interv Psychiatry. 2014;8(1):77–81. https://doi.org/10.1111/eip.12058.

    Article  PubMed  Google Scholar 

  11. Stowkowy J, Liu L, Cadenhead KS, Cannon TD, Cornblatt BA, TH MG, et al. Early traumatic experiences, perceived discrimination and conversion to psychosis in those at clinical high risk for psychosis. Soc Psychiatry Psychiatr Epidemiol. 2016;51(4):497–503. https://doi.org/10.1007/s00127-016-1182-y.

    Article  PubMed  Google Scholar 

  12. Egerton A, Howes OD, Houle S, McKenzie K, Valmaggia LR, Bagby MR, et al. Elevated striatal dopamine function in immigrants and their children: a risk mechanism for psychosis. Schizophr Bull. 2017;43(2):293–301. https://doi.org/10.1093/schbul/sbw181.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stain HJ, Halpin SA, Baker AL, Startup M, Carr VJ, Schall U, et al. Impact of rurality and substance use on young people at ultra high risk for psychosis. Early Interv Psychiatry. 2017;12(6):1173–80. https://doi.org/10.1111/eip.12437.

    Article  PubMed  Google Scholar 

  14. O’Donoghue B, Yung AR, Wood S, Thompson A, Lin A, McGorry P, et al. Neighborhood characteristics and the rate of identification of young people at ultra-high risk for psychosis. Schizophr Res. 2015;169(1–3):214–6. https://doi.org/10.1016/j.schres.2015.09.002.

    Article  PubMed  Google Scholar 

  15. O’Donoghue B, Nelson B, Yuen HP, Lane A, Wood S, Thompson A, et al. Social environmental risk factors for transition to psychosis in an ultra-high risk population. Schizophr Res. 2015;161(2–3):150–5. https://doi.org/10.1016/j.schres.2014.10.050.

    Article  PubMed  Google Scholar 

  16. Carney R, Cotter J, Firth J, Bradshaw T, Yung AR. Cannabis use and symptom severity in individuals at ultra high risk for psychosis: a meta-analysis. Acta Psychiatr Scand. 2017;136(1):5–15. https://doi.org/10.1111/acps.12699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Kraan T, Velthorst E, Koenders L, Zwaart K, Ising HK, Van Den Berg D, et al. Cannabis use and transition to psychosis in individuals at ultra-high risk: Review and meta-analysis. Psychol Med. 2016;46(4):673–81. https://doi.org/10.1017/S0033291715002329. Comprehensive review of the role of cannabis in transition to psychosis.

    Article  CAS  PubMed  Google Scholar 

  18. Kraan T, Velthorst E, Smit F, de Haan L, van der Gaag M. Trauma and recent life events in individuals at ultra high risk for psychosis: review and meta-analysis. Schizophr Res. 2015;161(2–3):143–9.

    Article  Google Scholar 

  19. Loewy RL, Corey S, Amirfathi F, Dabit S, Fulford D, Pearson R, et al. Childhood trauma and clinical high risk for psychosis. Schizophr Res. 2018;S0920–9964(18):30259. https://doi.org/10.1016/j.schres.2018.05.003.

    Article  Google Scholar 

  20. Brew B, Doris M, Shannon C, Mulholland C. What impact does trauma have on the at-risk mental state? A systematic literature review. Early Interv Psychiatry. 2018;12(2):115–24. https://doi.org/10.1111/eip.12453.

    Article  PubMed  Google Scholar 

  21. Grivel MM, Leong W, Masucci MD, Altschuler RA, Arndt LY, Redman SL, et al. Impact of lifetime traumatic experiences on suicidality and likelihood of conversion in a cohort of individuals at clinical high-risk for psychosis. Schizophr Res. 2017;195:549–53. https://doi.org/10.1016/j.schres.2017.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kraan T, Ising HK, Fokkema M, Velthorst E, van den Berg DPG, Kerkhoven M, et al. The effect of childhood adversity on 4-year outcome in individuals at ultra high risk for psychosis in the Dutch Early Detection Intervention Evaluation (EDIE-NL) Trial. Psychiatry Res. 2017;247(May 2016):55–62. https://doi.org/10.1016/j.psychres.2016.11.014.

    Article  PubMed  Google Scholar 

  23. Kraan T, van Dam DS, Velthorst E, de Ruigh EL, Nieman DH, Durston S, et al. Childhood trauma and clinical outcome in patients at ultra-high risk of transition to psychosis. Schizophr Res. 2015;169(1–3):193–8. https://doi.org/10.1016/j.schres.2015.10.030.

    Article  PubMed  Google Scholar 

  24. Mizrahi R. Social stress and psychosis risk: common neurochemical substrates? Neuropsychopharmacology. 2016;41(3):666–74. https://doi.org/10.1038/npp.2015.274.

    Article  CAS  PubMed  Google Scholar 

  25. Bora E, Lin A, Wood SJ, Yung AR, McGorry PD, Pantelis C. Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. Acta Psychiatr Scand. 2014;130(1):1–15. https://doi.org/10.1111/acps.12261.

    Article  CAS  PubMed  Google Scholar 

  26. de Paula AL, Hallak JE, Maia-de-Oliveira JP, Bressan RA, Machado-de-Sousa JP. Cognition in at-risk mental states for psychosis. Neurosci Biobehav Rev. 2015;57:199–208. https://doi.org/10.1016/j.neubiorev.2015.09.006.

    Article  PubMed  Google Scholar 

  27. • Addington J, Liu L, Perkins DO, Carrion RE, Keefe RSE, Woods SW. The role of cognition and social functioning as predictors in the transition to psychosis for youth with attenuated psychotic symptoms. Schizophr Bull. 2017;43(1):57–63. Presents a multidomain model of predictors of transition and is one of the first papers to offer external validation of a previous model.

    Article  Google Scholar 

  28. Bang M, Kim KR, Song YY, Baek S, Lee E, An SK. Neurocognitive impairments in individuals at ultra-high risk for psychosis: who will really convert? Aust N Z J Psychiatry. 2015;49(5):462–70. https://doi.org/10.1177/0004867414561527.

    Article  PubMed  Google Scholar 

  29. Carrion RE, Walder DJ, Auther AM, McLaughlin D, Zyla HO, Adelsheim S, et al. From the psychosis prodrome to the first-episode of psychosis: no evidence of a cognitive decline. J Psychiatr Res. 2018;96:231–8. https://doi.org/10.1016/j.jpsychires.2017.10.014.

    Article  PubMed  Google Scholar 

  30. Metzler S, Dvorsky D, Wyss C, Nordt C, Walitza S, Heekeren K, et al. Neurocognition in help-seeking individuals at risk for psychosis: prediction of outcome after 24 months. Psychiatry Res. 2016;246:188–94. https://doi.org/10.1016/j.psychres.2016.08.065.

    Article  PubMed  Google Scholar 

  31. Seidman LJ, Shapiro DI, Stone WS, Woodberry KA, Ronzio A, Cornblatt BA, et al. Association of neurocognition with transition to psychosis: baseline functioning in the second phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry. 2016;73(12):1239–48. https://doi.org/10.1001/jamapsychiatry.2016.2479.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mourik K, Decrescenzo P, Brucato G, Gill KE, Arndt L, Kimhy D, et al. Various neurocognitive deficits and conversion risk in individuals at clinical high risk for psychosis. Early Interv Psychiatry. 2017;11(3):250–4. https://doi.org/10.1111/eip.12296.

    Article  PubMed  Google Scholar 

  33. • Hauser M, Zhang JP, Sheridan EM, Burdick KE, Mogil R, Kane JM, et al. Neuropsychological test performance to enhance identification of subjects at clinical high risk for psychosis and to be most promising for predictive algorithms for conversion to psychosis: a meta-analysis. J Clin Psychiatry. 2017;78(1):e28–40. https://doi.org/10.4088/JCP.15r10197. Review of cognition and its role in predicting transition to psychosis.

    Article  PubMed  Google Scholar 

  34. Piskulic D, Liu L, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, et al. Social cognition over time in individuals at clinical high risk for psychosis: findings from the NAPLS-2 cohort. Schizophr Res. 2016;171(1–3):176–81. https://doi.org/10.1016/j.schres.2016.01.017.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Donkersgoed RJ, Wunderink L, Nieboer R, Aleman A, Pijnenborg GH. Social cognition in individuals at ultra-high risk for psychosis: a meta-analysis. PLoS One. 2015;10(10):e0141075. https://doi.org/10.1371/journal.pone.0141075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang T, Cui H, Wei Y, Tang Y, Xu L, Tang X, et al. Progressive decline of cognition during the conversion from prodrome to psychosis with a characteristic pattern of the theory of mind compensated by neurocognition. Schizophr Res. 2018;195:554–9. https://doi.org/10.1016/j.schres.2017.08.020.

    Article  PubMed  Google Scholar 

  37. Corcoran CM, Keilp JG, Kayser J, Klim C, Butler PD, Bruder GE, et al. Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective. Psychol Med. 2015;45(14):2959–73. https://doi.org/10.1017/s0033291715000902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Riecher-Rossler A, Studerus E. Prediction of conversion to psychosis in individuals with an at-risk mental state: a brief update on recent developments. Curr Opin Psychiatry. 2017;30(3):209–19. https://doi.org/10.1097/yco.0000000000000320. Recent review of predictors of transition to psychosis which complements this current review.

    Article  PubMed  Google Scholar 

  39. Velthorst E, Fett A-KJ, Reichenberg A, Perlman G, van Os J, Bromet EJ, et al. The 20-year longitudinal trajectories of social functioning in individuals with psychotic disorders. Am J Psychiatry. 2017;174(11):1075–85.

    Article  Google Scholar 

  40. • Addington J, Stowkowy J, Liu L, Cadenhead KS, Cannon TD, Cornblatt BA, et al. Clinical and functional characteristics of youth at clinical high-risk for psychosis who do not transition to psychosis. Psychol Med. 2018:1–8 In Press. Describes the outcome in a large sample of CHR youth who do not make the transition to psychosis.

  41. Fusar-Poli P, Rocchetti M, Sardella A, Avila A, Brandizzi M, Caverzasi E, et al. Disorder, not just state of risk: meta-analysis of functioning and quality of life in people at high risk of psychosis. Br J Psychiatry. 2015;207(3):198–206.

    Article  Google Scholar 

  42. Mechelli A, Lin A, Wood S, McGorry P, Amminger P, Tognin S, et al. Using clinical information to make individualized prognostic predictions in people at ultra high risk for psychosis. Schizophr Res. 2017;184:32–8.

    Article  Google Scholar 

  43. Brandizzi M, Valmaggia L, Byrne M, Jones C, Iwegbu N, Badger S, et al. Predictors of functional outcome in individuals at high clinical risk for psychosis at six years follow-up. J Psychiatr Res. 2015;65:115–23.

    Article  CAS  Google Scholar 

  44. Ciarleglio AJ, Brucato G, Masucci MD, Altschuler R, Colibazzi T, Corcoran CM, et al. A predictive model for conversion to psychosis in clinical high-risk patients. Psychol Med. 2018;1–10.

  45. Zhang T, Xu L, Tang Y, Li H, Tang X, Cui H, et al. Prediction of psychosis in prodrome: development and validation of a simple. personalized risk calculator. Psychol Med. 2018;1–9.

  46. Hengartner MP, Heekeren K, Dvorsky D, Walitza S, Rossler W, Theodoridou A. Course of psychotic symptoms, depression and global functioning in persons at clinical high risk of psychosis: results of a longitudinal observation study over three years focusing on both converters and non-converters. Schizophr Res. 2017;189:19–26. https://doi.org/10.1016/j.schres.2017.01.040.

    Article  PubMed  Google Scholar 

  47. Cannon-Spoor HE, Potkin SG, Wyatt RJ. Measurement of premorbid adjustment in chronic schizophrenia. Schizophr Bull. 1982;8(3):470–84.

    Article  CAS  Google Scholar 

  48. Tarbox SI, Addington J, Cadenhead KS, Cannon TD, Cornblatt BA, Perkins DO, et al. Functional development in clinical high risk youth: prediction of schizophrenia versus other psychotic disorders. Psychiatry Res. 2014;215(1):52–60.

    Article  Google Scholar 

  49. Morcillo C, Stochl J, Russo DA, Zambrana A, Ratnayake N, Jones PB, et al. First-rank symptoms and premorbid adjustment in young individuals at increased risk of developing psychosis. Psychopathology. 2015;48(2):120–6.

    Article  CAS  Google Scholar 

  50. Lyngberg K, Buchy L, Liu L, Perkins D, Woods S, Addington J. Patterns of premorbid functioning in individuals at clinical high risk of psychosis. Schizophr Res. 2015;169(1–3):209–13.

    Article  Google Scholar 

  51. Tarbox SI, Addington J, Cadenhead KS, Cannon TD, Cornblatt BA, Perkins DO, et al. Premorbid functional development and conversion to psychosis in clinical high-risk youths. Dev Psychopathol. 2013;25:1171–86.

    Article  Google Scholar 

  52. Cornblatt BA, Auther A, Mclaughlin D, Olsen RH, John M, Christoph U, et al. Psychosis prevention: a modified clinical high risk perspective from the recognition and prevention (RAP) program. Am J Psychiatry. 2015;172(10):986–94.

    Article  Google Scholar 

  53. Brucato G, Masucci MD, Arndt LY, Ben-David S, Colibazzi T, Corcoran CM, et al. Baseline demographics, clinical features and predictors of conversion among 200 individuals in a longitudinal prospective psychosis-risk cohort. Psychol Med. 2017;47(11):1923–35.

    Article  CAS  Google Scholar 

  54. • Carrión RE, Cornblatt BA, Burton CZ, Tso IF, Auther A, Adelsheim S, et al. Personalized prediction of psychosis: external validation of the NAPLS2 psychosis risk calculator with the EDIPPP project. Am J Psychiatry. 2017;173(10):989–96. External validation paper of the NAPLS risk calculator described in reference 71.

    Article  Google Scholar 

  55. Fusar-Poli P. The enduring search for the koplik spots of psychosis. JAMA Psychiatry. 2015;72(9):863–4. https://doi.org/10.1001/jamapsychiatry.2015.0611.

    Article  PubMed  Google Scholar 

  56. Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TGM, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77(2):147–57. https://doi.org/10.1016/j.biopsych.2014.05.023.

    Article  PubMed  Google Scholar 

  57. • Chung Y, Addington J, Bearden CE, et al. Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk. JAMA Psychiatry. 2018;75(9):960–8. https://doi.org/10.1001/jamapsychiatry.2018.1543. Use of machine learning in a large sample to examine change in neuroanatomy for those who later make the transition to psychosis.

    Article  PubMed  Google Scholar 

  58. Brown Timothy T, Kuperman Joshua M, Chung Y, Erhart M, McCabe C, Hagler Donald J Jr, et al. Neuroanatomical assessment of biological maturity. Curr Biol. 2012;22(18):1693–8. https://doi.org/10.1016/j.cub.2012.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zarogianni E, Storkey AJ, Borgwardt S, Smieskova R, Studerus E, Riecher-Rössler A, et al. Individualized prediction of psychosis in subjects with an at-risk mental state. Schizophr Res. 2017;S0920–9964(17):30537. https://doi.org/10.1016/j.schres.2017.08.061.

    Article  Google Scholar 

  60. Zarogianni E, Storkey AJ, Johnstone EC, Owens DGC, Lawrie SM. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res. 2017;181:6–12. https://doi.org/10.1016/j.schres.2016.08.027.

    Article  PubMed  Google Scholar 

  61. Das T, Borgwardt S, Hauke DJ, et al. Disorganized gyrification network properties during the transition to psychosis. JAMA Psychiatry. 2018;75(6):613–22. https://doi.org/10.1001/jamapsychiatry.2018.0391.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cao H, Chén OY, Chung Y, Forsyth JK, McEwen SC, Gee DG, et al. Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization. Nat Comm. 2018;9(1):3836. https://doi.org/10.1038/s41467-018-06350-7.

    Article  CAS  Google Scholar 

  63. Bernard JA, Orr JM, Mittal VA. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin. 2017;14:622–8. https://doi.org/10.1016/j.nicl.2017.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA psychiatry. 2015;72(9):882–91. https://doi.org/10.1001/jamapsychiatry.2015.0566.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cao H, McEwen SC, Chung Y, Chén OY, Bearden CE, Addington J, et al. Altered brain activation during memory retrieval precedes and predicts conversion to psychosis in individuals at clinical high risk. Schizophr Bull. 2018:sby122–sby. https://doi.org/10.1093/schbul/sby122.

  66. Bodatsch M, Brockhaus-Dumke A, Klosterkotter J, Ruhrmann S. Forecasting psychosis by event-related potentials-systematic review and specific meta-analysis. Biol Psychiatry. 2015;77(11):951–8. https://doi.org/10.1016/j.biopsych.2014.09.025.

    Article  PubMed  Google Scholar 

  67. Reilly TJ, Nottage JF, Studerus E, Rutigliano G, Micheli AID, Fusar-Poli P, et al. Gamma band oscillations in the early phase of psychosis: a systematic review. Neurosci Biobehav Rev. 2018;90:381–99. https://doi.org/10.1016/j.neubiorev.2018.04.006.

    Article  PubMed  Google Scholar 

  68. Ramyead A, Kometer M, Studerus E, Koranyi S, Ittig S, Gschwandtner U, et al. Aberrant current source-density and lagged phase synchronization of neural oscillations as markers for emerging psychosis. Schizophr Bull. 2015;41(4):919–29. https://doi.org/10.1093/schbul/sbu134.

    Article  PubMed  Google Scholar 

  69. Ramyead A, Studerus E, Kometer M, Uttinger M, Gschwandtner U, Fuhr P, et al. Prediction of psychosis using neural oscillations and machine learning in neuroleptic-naïve at-risk patients. World J Psychiatry. 2016;17(4):285–95. https://doi.org/10.3109/15622975.2015.1083614.

    Article  Google Scholar 

  70. van Tricht MJ, Nieman DH, Koelman JH, Bour LJ, van der Meer JN, van Amelsvoort TA, et al. Auditory ERP components before and after transition to a first psychotic episode. Biol Psychol. 2011;87(3):350–7. https://doi.org/10.1016/j.biopsycho.2011.04.005.

    Article  PubMed  Google Scholar 

  71. Riecher-Rossler A. Oestrogens, prolactin, hypothalamic-pituitary-gonadal axis, and schizophrenic psychoses. Lancet Psychiatry. 2017;4(1):63–72. https://doi.org/10.1016/s2215-0366(16)30379-0.

    Article  PubMed  Google Scholar 

  72. Ising HK, Ruhrmann S, Burger NA, Rietdijk J, Dragt S, Klaassen RM, et al. Development of a stage-dependent prognostic model to predict psychosis in ultra-high-risk patients seeking treatment for co-morbid psychiatric disorders. Psychol Med. 2016;46(9):1839–51. https://doi.org/10.1017/s0033291716000325.

    Article  CAS  PubMed  Google Scholar 

  73. • Cannon TD, Yu C, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, et al. An individualized risk calculator for research in prodromal psychosis. Am J Psychiatry. 2016;173(10):980–8. https://doi.org/10.1176/appi.ajp.2016.15070890. Development of a web-based risk calculator for predicting transition to psychosis in prodromal psychosis for use in research.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fusar-Poli P, Schultze-Lutter F, Cappucciati M, Rutigliano G, Bonoldi I, Stahl D, et al. The dark side of the moon: meta-analytical impact of recruitment strategies on risk enrichment in the clinical high risk state for psychosis. Schizophr Bull. 2016;42(3):732–43. https://doi.org/10.1093/schbul/sbv162.

    Article  PubMed  Google Scholar 

  75. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. Berlin: Springer Science & Business Media; 2008.

    Google Scholar 

  76. Studerus E, Papmeyer M, Riecher-Rössler A. Neurocognition and motor functioning in the prediction of psychosis. Early Detection and Intervention in Psychosis. Basel: Karger Publishers; 2016. p. 116–32.

    Book  Google Scholar 

  77. Yuen HP, Mackinnon A, Hartmann J, Amminger P, Markulev C, Lavoie S, et al. S136. A novel approach for developing prediction model of transition to psychosis: dynamic prediction using joint modeling. Schizophr Bull. 2018;44(suppl_1):S378–S9.

    Article  Google Scholar 

  78. Yuen HP, Mackinnon A. Performance of joint modeling of time-to-event data with time-dependent predictors: an assessment based on transition to psychosis data. PeerJ. 2016;4:e2582. https://doi.org/10.7717/peerj.2582.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yuen HP, Mackinnon A, Nelson B. A new method for analyzing transition to psychosis: joint modeling of time-to-event outcome with time-dependent predictors. Int J Methods Psychiatr Res. 2018;27(1). https://doi.org/10.1002/mpr.1588.

    Article  Google Scholar 

  80. • Studerus E, Ramyead A, Riecher-Rossler A. Prediction of transition to psychosis in patients with a clinical high risk for psychosis: a systematic review of methodology and reporting. Psychol Med. 2017;47(7):1163–78. https://doi.org/10.1017/s0033291716003494. A systematic review of methodology and reporting of predictors of transition to psychosis.

    Article  CAS  PubMed  Google Scholar 

  81. Addington J, Cadenhead KS, Cornblatt BA, Mathalon DH, McGlashan TH, Perkins DO, et al. North American Prodrome Longitudinal Study (NAPLS 2): overview and recruitment. Schizophr Res. 2012;142(1–3):77–82. https://doi.org/10.1016/j.schres.2012.09.012.

    Article  PubMed  PubMed Central  Google Scholar 

  82. van Os J, Rutten BP, Myin-Germeys I, Delespaul P, Viechtbauer W, van Zelst C, et al. Identifying gene-environment interactions in schizophrenia: contemporary challenges for integrated, large-scale investigations. Schizophr Bull. 2014;40(4):729–36. https://doi.org/10.1093/schbul/sbu069.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Preparation of this article was supported by National Institute of Mental Health Grant MH081984 to Jean Addington. Paul Metzak and Olga Santesteban-Echarri are supported by Canadian Institutes of Health Research post-doctoral scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Addington.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines). This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Precision Medicine in Psychiatry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addington, J., Farris, M., Stowkowy, J. et al. Predictors of Transition to Psychosis in Individuals at Clinical High Risk. Curr Psychiatry Rep 21, 39 (2019). https://doi.org/10.1007/s11920-019-1027-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-019-1027-y

Keywords

Navigation