Skip to main content

Advertisement

Log in

Can Long-Term Outcomes of Posttraumatic Headache be Predicted?

  • New and Emerging Therapies in Interventional Pain Medicine (J Hasoon, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Headache is one of the most common symptoms of traumatic brain injury, and it is more common in patients with mild, rather than moderate or severe, traumatic brain injury. Posttraumatic headache can be the most persistent symptom of traumatic brain injury. In this article, we review the current understanding of posttraumatic headache, summarize the current knowledge of its pathophysiology and treatment, and review the research regarding predictors of long-term outcomes.

Recent Findings

To date, posttraumatic headache has been treated based on the semiology of the primary headache disorder that it most resembles, but the pathophysiology is likely to be different, and the long-term prognosis differs as well. No models exist to predict long-term outcomes, and few studies have highlighted risk factors for the development of acute and persistent posttraumatic headaches. Further research is needed to elucidate the pathophysiology and identify specific treatments for posttraumatic headache to be able to predict long-term outcomes. In addition, the effect of managing comorbid traumatic brain injury symptoms on posttraumatic headache management should be further studied.

Summary

Posttraumatic headache can be a persistent symptom of traumatic brain injury, especially mild traumatic brain injury. It has traditionally been treated based on the semiology of the primary headache disorder it most closely resembles, but further research is needed to elucidate the pathophysiology of posttraumatic headache and determine risk factors to better predict long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Giza et al. [12•]

Similar content being viewed by others

Data Availability

IRB approval was not sought because this was a literature review. No patient information was reviewed for this review. The data that support the findings of this review are available from the corresponding author upon reasonable request and IRB approval, as applicable.

Abbreviations

CGRP:

Calcitonin gene-related peptide

CI:

Confidence interval

eCB:

Endocannabinoid

GCS:

Glasgow Coma Scale

mAbs:

Monoclonal antibodies

MRI:

Magnetic resonance imaging

OR:

Odds ratio

PTH:

Posttraumatic headache

TBI:

Traumatic brain injury

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130:1080–97. https://doi.org/10.3171/2017.10.Jns17352.

    Article  PubMed  Google Scholar 

  2. Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of mild traumatic brain injury: Results of the who collaborating centre task force on mild traumatic brain injury. J Rehabil Med. 2004. https://doi.org/10.1080/16501960410023732.

    Article  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. CDC grand rounds: reducing severe traumatic brain injury in the United States. MMWR Morb Mortal Wkly Rep. 2013;62:549–52.

    Google Scholar 

  4. Arbour C, Bouferguene Y, Beauregard R, Lavigne G, Herrero Babiloni A. Update on the prevalence of persistent post-traumatic headache in adult civilian traumatic brain injury: Protocol for a systematic review and meta-analysis. BMJ Open. 2020;10:e032706. https://doi.org/10.1136/bmjopen-2019-032706.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nampiaparampil DE. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA. 2008;300:711–9. https://doi.org/10.1001/jama.300.6.711.

    Article  CAS  PubMed  Google Scholar 

  6. Malec JF, Brown AW, Leibson CL, et al. The Mayo Classification System for Traumatic Brain Injury Severity. J Neurotrauma. 2007;24:1417–24. https://doi.org/10.1089/neu.2006.0245.

    Article  PubMed  Google Scholar 

  7. Dombovy ML. Traumatic brain injury. Continuum (Minneap Minn). 2011;17:584–605. https://doi.org/10.1212/01.CON.0000399074.07686.76.

    Article  PubMed  Google Scholar 

  8. Shaikh F, Waseem M. Head Trauma. StatPearls Publishing, 2023.

  9. Eapen BC, Cifu DX. Brain Injury Medicine Board Review. Elsevier, 2020.

  10. Covassin T, Moran R, Elbin RJ. Sex differences in reported concussion injury rates and time loss from participation: An update of the national collegiate athletic association injury surveillance program from 2004–2005 through 2008–2009. J Athl Train. 2016;51:189–94. https://doi.org/10.4085/1062-6050-51.3.05.

    Article  PubMed  PubMed Central  Google Scholar 

  11. • Howard L, Schwedt TJ. Posttraumatic headache: recent progress. Curr Opin Neurol. 2020;33:316–22. https://doi.org/10.1097/WCO.0000000000000815. This article provides an excellent outline for future directions of research in posttraumatic headache.

    Article  PubMed  Google Scholar 

  12. • Giza C, Greco T, Prins ML. Concussion: pathophysiology and clinical translation. Handb Clin Neurol. 2018;158:51–61. https://doi.org/10.1016/b978-0-444-63954-7.00006-9. This article summarizes the data to date on the pathophysiology of posttraumatic headache.

    Article  PubMed  Google Scholar 

  13. Deshpande LS, Sun DA, Sombati S, et al. Alterations in neuronal calcium levels are associated with cognitive deficits after traumatic brain injury. Neurosci Lett. 2008;441:115–9. https://doi.org/10.1016/j.neulet.2008.05.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fineman I, Hovda DA, Smith M, Yoshino A, Becker DP. Concussive brain injury is associated with a prolonged accumulation of calcium: A 45ca autoradiographic study. Brain Res. 1993;624:94–102. https://doi.org/10.1016/0006-8993(93)90064-t.

    Article  CAS  PubMed  Google Scholar 

  15. Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73:889–900. https://doi.org/10.3171/jns.1990.73.6.0889.

    Article  CAS  PubMed  Google Scholar 

  16. Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J Cereb Blood Flow Metab. 1992;12:12–24. https://doi.org/10.1038/jcbfm.1992.3.

    Article  CAS  PubMed  Google Scholar 

  17. Hovda DA, Yoshino A, Kawamata T, Katayama Y, Fineman I, Becker DP. The increase in local cerebral glucose utilization following fluid percussion brain injury is prevented with kynurenic acid and is associated with an increase in calcium. Acta Neurochir Suppl (Wien). 1990;51:331–3. https://doi.org/10.1007/978-3-7091-9115-6_112.

    Article  CAS  PubMed  Google Scholar 

  18. Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma. 2001;18:141–62. https://doi.org/10.1089/08977150150502587.

    Article  CAS  PubMed  Google Scholar 

  19. Moore AH, Osteen CL, Chatziioannou AF, Hovda DA, Cherry SR. Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using fdg-micropet. J Cereb Blood Flow Metab. 2000;20:1492–501. https://doi.org/10.1097/00004647-200010000-00011.

    Article  CAS  PubMed  Google Scholar 

  20. Prins ML, Hovda DA. Mapping cerebral glucose metabolism during spatial learning: Interactions of development and traumatic brain injury. J Neurotrauma. 2001;18:31–46. https://doi.org/10.1089/089771501750055758.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas S, Prins ML, Samii M, Hovda DA. Cerebral metabolic response to traumatic brain injury sustained early in development: a 2-deoxy-d-glucose autoradiographic study. J Neurotrauma. 2000;17:649–65. https://doi.org/10.1089/089771500415409.

    Article  CAS  PubMed  Google Scholar 

  22. Büki A, Povlishock JT. All roads lead to disconnection?—traumatic axonal injury revisited. Acta Neurochir (Wien). 2006;148:181–93. https://doi.org/10.1007/s00701-005-0674-4. discussion 193–184.

    Article  PubMed  Google Scholar 

  23. Daniel DG, Mathew RJ, Wilson WH. Sex roles and regional cerebral blood flow. Psychiatry Res. 1989;27:55–64. https://doi.org/10.1016/0165-1781(89)90009-7.

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Lou X, Ma L. Use of 3d pseudo-continuous arterial spin labeling to characterize sex and age differences in cerebral blood flow. Neuroradiology. 2016;58:943–8. https://doi.org/10.1007/s00234-016-1713-y.

    Article  PubMed  Google Scholar 

  25. Rodriguez G, Warkentin S, Risberg J, Rosadini G. Sex differences in regional cerebral blood flow. J Cereb Blood Flow Metab. 1988;8:783–9. https://doi.org/10.1038/jcbfm.1988.133.

    Article  CAS  PubMed  Google Scholar 

  26. Gaignard P, Savouroux S, Liere P, et al. Effect of sex differences on brain mitochondrial function and its suppression by ovariectomy and in aged mice. Endocrinology. 2015;156:2893–904. https://doi.org/10.1210/en.2014-1913.

    Article  CAS  PubMed  Google Scholar 

  27. Khalifa AR, Abdel-Rahman EA, Mahmoud AM, et al. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ros homeostasis in young mouse heart and brain. Physiol Rep. 2017. https://doi.org/10.14814/phy2.13125.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA. Sex differences in glia reactivity after cortical brain injury. Glia. 2015;63:1966–81. https://doi.org/10.1002/glia.22867.

    Article  PubMed  Google Scholar 

  29. Nelson LH, Lenz KM. The immune system as a novel regulator of sex differences in brain and behavioral development. J Neurosci Res. 2017;95:447–61. https://doi.org/10.1002/jnr.23821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pyter LM, Kelly SD, Harrell CS, Neigh GN. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain Behav Immun. 2013;30:88–94. https://doi.org/10.1016/j.bbi.2013.01.075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lungu O, Potvin S, Tikàsz A, Mendrek A. Sex differences in effective fronto-limbic connectivity during negative emotion processing. Psychoneuroendocrinology. 2015;62:180–8. https://doi.org/10.1016/j.psyneuen.2015.08.012.

    Article  PubMed  Google Scholar 

  32. Ryman SG, van den Heuvel MP, Yeo RA, et al. Sex differences in the relationship between white matter connectivity and creativity. Neuroimage. 2014;101:380–9. https://doi.org/10.1016/j.neuroimage.2014.07.027.

    Article  PubMed  Google Scholar 

  33. Satterthwaite TD, Wolf DH, Roalf DR, et al. Linked sex differences in cognition and functional connectivity in youth. Cereb Cortex. 2015;25:2383–94. https://doi.org/10.1093/cercor/bhu036.

    Article  PubMed  Google Scholar 

  34. Schmithorst VJ. Developmental sex differences in the relation of neuroanatomical connectivity to intelligence. Intelligence. 2009;37:164–73. https://doi.org/10.1016/j.intell.2008.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Carey C, Saxe J, White FA, Naugle KM. An exploratory study of endogenous pain modulatory function in patients following mild traumatic brain injury. Pain Med. 2019;20:2198–207. https://doi.org/10.1093/pm/pnz058.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Irvine KA, Sahbaie P, Ferguson AR, Clark JD. Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: a chronic issue. Exp Neurol. 2020;333: 113428. https://doi.org/10.1016/j.expneurol.2020.113428.

    Article  CAS  PubMed  Google Scholar 

  37. Kopruszinski CM, Turnes JM, Swiokla J, et al. CGRP monoclonal antibody prevents the loss of diffuse noxious inhibitory controls (dnic) in a mouse model of post-traumatic headache. Cephalalgia. 2021;41:749–59. https://doi.org/10.1177/0333102420981688.

    Article  PubMed  Google Scholar 

  38. Schwedt TJ, Chong CD, Peplinski J, Ross K, Berisha V. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain. 2017;18:87. https://doi.org/10.1186/s10194-017-0796-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chong CD, Berisha V, Chiang CC, Ross K, Schwedt TJ. Less cortical thickness in patients with persistent post-traumatic headache compared with healthy controls: an MRI study. Headache. 2018;58:53–61. https://doi.org/10.1111/head.13223.

    Article  PubMed  Google Scholar 

  40. Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev. 2023;103:1565–644. https://doi.org/10.1152/physrev.00059.2021.

    Article  CAS  PubMed  Google Scholar 

  41. Mehkri Y, Hanna C, Sriram S, Lucke-Wold B, Johnson RD, Busl K. Calcitonin gene-related peptide and neurologic injury: an emerging target for headache management. Clin Neurol Neurosurg. 2022;220: 107355. https://doi.org/10.1016/j.clineuro.2022.107355.

    Article  PubMed  Google Scholar 

  42. Tian J, Yang L, Wang P, Yang L, Fan Z. Exogenous CGRP regulates apoptosis and autophagy to alleviate traumatic brain injury through Akt/mTOR signalling pathway. Neurochem Res. 2020;45:2926–38. https://doi.org/10.1007/s11064-020-03141-9.

    Article  CAS  PubMed  Google Scholar 

  43. Zhai L, Sakurai T, Kamiyoshi A, et al. Endogenous calcitonin gene-related peptide suppresses ischemic brain injuries and progression of cognitive decline. J Hypertens. 2018;36:876–91. https://doi.org/10.1097/hjh.0000000000001649.

    Article  CAS  PubMed  Google Scholar 

  44. Ashina H, Al-Khazali HM, Iljazi A, et al. Low plasma levels of calcitonin gene-related peptide in persistent post-traumatic headache attributed to mild traumatic brain injury. Cephalalgia. 2020;40:1276–82. https://doi.org/10.1177/0333102420941115.

    Article  PubMed  Google Scholar 

  45. Headache Classification Committee of the International Headache Society: The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808. https://doi.org/10.1177/0333102413485658.

  46. Uomoto JM, Esselman PC. Traumatic brain injury and chronic pain: differential types and rates by head injury severity. Arch Phys Med Rehabil. 1993;74:61–4.

    CAS  PubMed  Google Scholar 

  47. Yamaguchi M. Incidence of headache and severity of head injury. Headache. 1992;32:427–31. https://doi.org/10.1111/j.1526-4610.1992.hed3209427.x.

    Article  CAS  PubMed  Google Scholar 

  48. Lucas S. Posttraumatic headache: Clinical characterization and management. Curr Pain Headache Rep. 2015;19:48. https://doi.org/10.1007/s11916-015-0520-1.

    Article  PubMed  Google Scholar 

  49. Xu H, Pi H, Ma L, Su X, Wang J. Incidence of headache after traumatic brain injury in China: a large prospective study. World Neurosurg. 2016;88:289–96. https://doi.org/10.1016/j.wneu.2015.12.028.

    Article  PubMed  Google Scholar 

  50. Ingebrigtsen T, Waterloo K, Marup-Jensen S, Attner E, Romner B. Quantification of post-concussion symptoms 3 months after minor head injury in 100 consecutive patients. J Neurol. 1998;245:609–12. https://doi.org/10.1007/s004150050254.

    Article  CAS  PubMed  Google Scholar 

  51. Yilmaz T, Roks G, de Koning M, et al. Risk factors and outcomes associated with post-traumatic headache after mild traumatic brain injury. Emerg Med J. 2017;34:800–5. https://doi.org/10.1136/emermed-2015-205429.

    Article  PubMed  Google Scholar 

  52. Voormolen DC, Haagsma JA, Polinder S, et al. Post-concussion symptoms in complicated vs. uncomplicated mild traumatic brain injury patients at three and six months post-injury: results from the CENTER-TBI study. J Clin Med. 2019. https://doi.org/10.3390/jcm8111921.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schwedt TJ. Post-traumatic headache due to mild traumatic brain injury: current knowledge and future directions. Cephalalgia. 2021;41:464–71. https://doi.org/10.1177/0333102420970188.

    Article  PubMed  Google Scholar 

  54. Ashina H, Iljazi A, Al-Khazali HM, et al. Persistent post-traumatic headache attributed to mild traumatic brain injury: deep phenotyping and treatment patterns. Cephalalgia. 2020;40:554–64. https://doi.org/10.1177/0333102420909865.

    Article  PubMed  Google Scholar 

  55. Howard L, Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. Symptoms of autonomic dysfunction among those with persistent posttraumatic headache attributed to mild traumatic brain injury: a comparison to migraine and healthy controls. Headache. 2018;58:1397–407. https://doi.org/10.1111/head.13396.

    Article  PubMed  Google Scholar 

  56. Kamins J, Richards R, Barney BJ, et al. Evaluation of posttraumatic headache phenotype and recovery time after youth concussion. JAMA Netw Open. 2021;4: e211312. https://doi.org/10.1001/jamanetworkopen.2021.1312.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ishii R, Schwedt TJ, Trivedi M, et al. Mild traumatic brain injury affects the features of migraine. J Headache Pain. 2021;22:80. https://doi.org/10.1186/s10194-021-01291-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Grangeon L, O’Connor E, Chan CK, Akijian L, Pham Ngoc TM, Matharu MS. New insights in post-traumatic headache with cluster headache phenotype: a cohort study. J Neurol Neurosurg Psychiatry. 2020;91:572–9. https://doi.org/10.1136/jnnp-2019-322725.

    Article  PubMed  Google Scholar 

  59. Baandrup L, Jensen R. Chronic post-traumatic headache—a clinical analysis in relation to The International Headache Classification 2nd edition. Cephalalgia. 2005;25:132–8. https://doi.org/10.1111/j.1468-2982.2004.00818.x.

    Article  CAS  PubMed  Google Scholar 

  60. Kjeldgaard D, Forchhammer H, Teasdale T, Jensen RH. Chronic post-traumatic headache after mild head injury: a descriptive study. Cephalalgia. 2014;34:191–200. https://doi.org/10.1177/0333102413505236.

    Article  PubMed  Google Scholar 

  61. Powers SW, Coffey CS, Chamberlin LA, et al. Trial of amitriptyline, topiramate, and placebo for pediatric migraine. N Engl J Med. 2017;376:115–24. https://doi.org/10.1056/NEJMoa1610384.

    Article  CAS  PubMed  Google Scholar 

  62. Lipton RB, Dodick D, Sadovsky R, et al. A self-administered screener for migraine in primary care: The ID Migraine validation study. Neurology. 2003;61:375–82. https://doi.org/10.1212/01.wnl.0000078940.53438.83.

    Article  CAS  PubMed  Google Scholar 

  63. Klein SK, Brown CB, Ostrowski-Delahanty S, Bruckman D, Victorio MC. Identifying migraine phenotype post traumatic headache (MPTH) to guide overall recovery from traumatic brain injury. J Child Neurol. 2022. https://doi.org/10.1177/08830738221100327.

    Article  PubMed  Google Scholar 

  64. DePalma RG. Combat TBI: history, epidemiology, and injury modes. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Kobeissy FH (ed): CRC Press/Taylor & Francis, Boca Raton (FL); 2015.

  65. Theeler BJ, Flynn FG, Erickson JC. Headaches after concussion in US soldiers returning from Iraq or Afghanistan. Headache. 2010;50:1262–72. https://doi.org/10.1111/j.1526-4610.2010.01700.x.

    Article  PubMed  Google Scholar 

  66. Theeler BJ, Flynn FG, Erickson JC. Chronic daily headache in U.S. soldiers after concussion. Headache. 2012;52:732–8. https://doi.org/10.1111/j.1526-4610.2012.02112.x.

    Article  PubMed  Google Scholar 

  67. Finkel AG, Ivins BJ, Yerry JA, Klaric JS, Scher A, Sammy Choi Y. Which matters more? A retrospective cohort study of headache characteristics and diagnosis type in soldiers with mTBI/concussion. Headache. 2017;57:719–28. https://doi.org/10.1111/head.13056.

    Article  PubMed  Google Scholar 

  68. Symptoms of mild TBI and concussion. 2023. Accessed: 2023: https://www.cdc.gov/traumaticbraininjury/concussion/symptoms.html.

  69. Hovaguimian A, Roth J. Management of chronic migraine. BMJ. 2022;379: e067670. https://doi.org/10.1136/bmj-2021-067670.

    Article  PubMed  Google Scholar 

  70. Lavigne G, Khoury S, Chauny JM, Desautels A. Pain and sleep in post-concussion/mild traumatic brain injury. Pain. 2015;156(Suppl 1):S75-s85. https://doi.org/10.1097/j.pain.0000000000000111.

    Article  PubMed  Google Scholar 

  71. Minen MT, Boubour A, Walia H, Barr W. Post-concussive syndrome: a focus on post-traumatic headache and related cognitive, psychiatric, and sleep issues. Curr Neurol Neurosci Rep. 2016;16:100. https://doi.org/10.1007/s11910-016-0697-7.

    Article  PubMed  Google Scholar 

  72. Obermann M, Naegel S, Bosche B, Holle D. An update on the management of post-traumatic headache. Ther Adv Neurol Disord. 2015;8:311–5. https://doi.org/10.1177/1756285615605699.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kamins J. Models for treating post-traumatic headache. Curr Pain Headache Rep. 2021;25:52. https://doi.org/10.1007/s11916-021-00970-3.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ashina H, Iljazi A, Al-Khazali HM, et al. Hypersensitivity to calcitonin gene-related peptide in post-traumatic headache. Ann Neurol. 2020;88:1220–8. https://doi.org/10.1002/ana.25915.

    Article  CAS  PubMed  Google Scholar 

  75. Navratilova E, Rau J, Oyarzo J, et al. CGRP-dependent and independent mechanisms of acute and persistent post-traumatic headache following mild traumatic brain injury in mice. Cephalalgia. 2019;39:1762–75. https://doi.org/10.1177/0333102419877662.

    Article  PubMed  Google Scholar 

  76. Ashina H, Iljazi A, Al-Khazali HM, et al. Efficacy, tolerability, and safety of erenumab for the preventive treatment of persistent post-traumatic headache attributed to mild traumatic brain injury: an open-label study. J Headache Pain. 2020;21:62. https://doi.org/10.1186/s10194-020-01136-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tanaka M, Zhang Y. Preclinical studies of posttraumatic headache and the potential therapeutics. Cells. 2022;12. https://doi.org/10.3390/cells12010155.

  78. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004;25:31–9.

    CAS  PubMed  Google Scholar 

  79. Stilling J, Paxman E, Mercier L, et al. Treatment of persistent post-traumatic headache and post-concussion symptoms using repetitive transcranial magnetic stimulation: a pilot, double-blind, randomized controlled trial. J Neurotrauma. 2020;37:312–23. https://doi.org/10.1089/neu.2019.6692.

    Article  PubMed  Google Scholar 

  80. Cnossen MC, van der Naalt J, Spikman JM, et al. Prediction of persistent post-concussion symptoms after mild traumatic brain injury. J Neurotrauma. 2018;35:2691–8. https://doi.org/10.1089/neu.2017.5486.

    Article  PubMed  Google Scholar 

  81. Stulemeijer M, van der Werf S, Borm GF, Vos PE. Early prediction of favourable recovery 6 months after mild traumatic brain injury. J Neurol Neurosurg Psychiatry. 2008;79:936–42. https://doi.org/10.1136/jnnp.2007.131250.

    Article  CAS  PubMed  Google Scholar 

  82. Cnossen MC, Winkler EA, Yue JK, et al. Development of a prediction model for post-concussive symptoms following mild traumatic brain injury: a TRACK-TBI pilot study. J Neurotrauma. 2017;34:2396–409. https://doi.org/10.1089/neu.2016.4819.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nordhaug LH, Linde M, Follestad T, et al. Change in headache suffering and predictors of headache after mild traumatic brain injury: a population-based, controlled, longitudinal study with twelve-month follow-up. J Neurotrauma. 2019;36:3244–52. https://doi.org/10.1089/neu.2018.6328.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Varner C, Thompson C, de Wit K, Borgundvaag B, Houston R, McLeod S. Predictors of persistent concussion symptoms in adults with acute mild traumatic brain injury presenting to the emergency department. CJEM. 2021;23:365–73. https://doi.org/10.1007/s43678-020-00076-6.

    Article  PubMed  Google Scholar 

  85. Peña A, Dumkrieger G, Berisha V, Ross K, Chong CD, Schwedt TJ. Headache characteristics and psychological factors associated with functional impairment in individuals with persistent posttraumatic headache. Pain Med. 2021;22:670–6. https://doi.org/10.1093/pm/pnaa405.

    Article  PubMed  Google Scholar 

  86. Niu X, Bai L, Sun Y, et al. Disruption of periaqueductal grey-default mode network functional connectivity predicts persistent post-traumatic headache in mild traumatic brain injury. J Neurol Neurosurg Psychiatry. 2019;90:326–32. https://doi.org/10.1136/jnnp-2018-318886.

    Article  PubMed  Google Scholar 

  87. Toth A. Magnetic resonance imaging application in the area of mild and acute traumatic brain injury: implications for diagnostic markers? Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Kobeissy FH (ed): CRC, Boca Raton (FL); 2015.

  88. Rau JC, Dumkrieger GM, Chong CD, Schwedt TJ. Imaging post-traumatic headache. Curr Pain Headache Rep. 2018;22:64. https://doi.org/10.1007/s11916-018-0719-z.

    Article  PubMed  Google Scholar 

  89. Cancelliere C, Boyle E, Côté P, Holm LW, Salmi LR, Cassidy JD. Development and validation of a model predicting post-traumatic headache six months after a motor vehicle collision in adults. Accid Anal Prev. 2020;142: 105580. https://doi.org/10.1016/j.aap.2020.105580.

    Article  PubMed  Google Scholar 

  90. Nabity PS, Jaramillo CA, Resick PA, et al. Persistent posttraumatic headaches and functioning in veterans: injury type can matter. Headache. 2021;61:1334–41. https://doi.org/10.1111/head.14210.

    Article  PubMed  Google Scholar 

  91. • Andersen AM, Ashina H, Iljazi A, et al. Risk factors for the development of post-traumatic headache attributed to traumatic brain injury: a systematic review. Headache. 2020;60:1066–75. https://doi.org/10.1111/head.13812. This article reviews work to date on risk factors for persistent posttraumatic headache and highlights the need for further research on this topic.

    Article  PubMed  Google Scholar 

  92. Mao L, Dumkrieger G, Ku D, et al. Developing multivariable models for predicting headache improvement in patients with acute post-traumatic headache attributed to mild traumatic brain injury: a preliminary study. Headache. 2023;63:136–45. https://doi.org/10.1111/head.14450.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mao L, Li J, Schwedt TJ, et al. Questionnaire and structural imaging data accurately predict headache improvement in patients with acute post-traumatic headache attributed to mild traumatic brain injury. Cephalalgia. 2023;43:3331024231172736. https://doi.org/10.1177/03331024231172736.

    Article  PubMed  Google Scholar 

  94. Si B, Dumkrieger G, Wu T, et al. Sub-classifying patients with mild traumatic brain injury: a clustering approach based on baseline clinical characteristics and 90-day and 180-day outcomes. PLoS ONE. 2018;13: e0198741. https://doi.org/10.1371/journal.pone.0198741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of Neuroscience Publications at Barrow Neurological Institute for assistance with manuscript preparation.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

O.K. and M.Y. wrote the manuscript. O.K. prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kerry L. Knievel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingsford, O., Yehya, M., Zieman, G. et al. Can Long-Term Outcomes of Posttraumatic Headache be Predicted?. Curr Pain Headache Rep (2024). https://doi.org/10.1007/s11916-024-01254-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-024-01254-2

Keywords

Navigation