Skip to main content

Advertisement

Log in

The Pathophysiology of Sports Concussion

  • Concussion and Head Injury (S Lucas, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

During concussion, the brain is exposed to rapid acceleration, deceleration, and rotational forces, resulting in the stretching and distortion of neural structures. This produces in an injury of transient neurological dysfunction, as evidenced by the clinical symptomatology. It is now evident that recurrent head trauma is also associated with the development of some chronic neurodegenerative disorders. Despite increased awareness of concussion over the past decade, large voids remain in our understanding of its pathophysiology. Prospective longitudinal studies are needed to better understand the underlying biological mechanism of acute concussive injury as it relates to chronic neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th international conference on concussion in sport held in Zurich, November 2012. Br J Sports Med. 2013;47:250–8.

    Article  PubMed  Google Scholar 

  2. McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol. 2014;127:29–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Choe MC, Babikian T, DiFiori J, et al. A pediatric perspective on concussion pathophysiology. Curr Opin Pediatr. 2012;24:689–95.

    Article  PubMed  Google Scholar 

  4. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30:33–48.

    Article  PubMed  Google Scholar 

  5. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.

    PubMed Central  PubMed  Google Scholar 

  6. Seifert TD. Sports concussion and associated post-traumatic headache. Headache. 2013;53:726–36.

    Article  PubMed  Google Scholar 

  7. Maugans TA, Farley C, Altaye M, et al. Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics. 2012;129:28–37.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma. 2013;30:30–8.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75:524–33. An exceptional article summarizing the latest updates in existing knowledge regarding post-concussion neurometabolic changes including how these changes are related to clinical symptoms and possibly long-term impairment.

    Article  Google Scholar 

  10. Delaney JS, Al-Kashmiri A, Correa JA. Mechanisms of injury for concussions in university football, ice hockey, and soccer. Clin J Sports Med. 2014;24:233–7.

    Article  Google Scholar 

  11. Mihalik JP, Blackburn JT, Greenwald RM, et al. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics. 2010;125(6):e1394–401.

    Article  PubMed  Google Scholar 

  12. Tierney RT, Sitler MR, Swanik CB, et al. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports Exerc. 2005;37:272–9.

    Article  PubMed  Google Scholar 

  13. Dvorak J, McCrory P, Kirkendall DT. Head injuries in the female football player: incidence, mechanisms, risk factors and management. Br J Sports Med. 2007;41 suppl 1:i44–6.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Centers for disease control and prevention. Traumatic brain injury. www.cdc.gov/traumaticbraininjury. Accessed Oct 26, 2014.

  15. Tellier A, Marshall SC, Wilson KG, et al. The heterogeneity of mild traumatic brain injury: where do we stand? Brain Inj. 2009;23(11):879–87.

    Article  PubMed  Google Scholar 

  16. Seiger A, Goldwater E, Deibert E. Does mechanism of injury play a role in recovery from concussion? J Head Traum Rehab. 2014. This retrospective study suggests that concussion from MVA may be a more serious injury than a typical concussion sustained during sports.

  17. Koerte IK, Ertl-Wagner B, Reiser M, et al. White matter integrity in the brains of professional soccer players without a symptomatic concussion. JAMA J Am Med Assoc. 2012;308(18):1859–61.

    Article  CAS  Google Scholar 

  18. Marchi N, Bazarian JJ, Puvenna V, et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8(3), e56805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cantu R et al. Hit count threshold white paper. 2013.

    Google Scholar 

  20. Gilkey SJ, Ramadan NM, Aurora TK, et al. Cerebral blood flow in chronic posttraumatic headache. Headache. 1997;37:583–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lauritzen M. Pathophysiology of the migraine aura: the spreading depression theory. Brain. 1994;117:119–210.

    Article  Google Scholar 

  22. Lucas S. Headache management in concussion and mild traumatic brain injury. PM R. 2011;2(1 suppl 2):S406–12.

    Article  Google Scholar 

  23. Leao AA. Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol. 1947;10(6):409–14.

    CAS  PubMed  Google Scholar 

  24. Taylor AR, Bell TK. Slowing of cerebral circulation after concussional head injury: a controlled trial. Lancet. 1966;2:178–80.

    Article  CAS  PubMed  Google Scholar 

  25. Piovesan EJ, Kowacs PA, Oshinsky ML. Convergence of cervical and trigeminal sensory afferents. Curr Pain Headache Rep. 2003;7(5):377–83.

    Article  PubMed  Google Scholar 

  26. Kors EE, Terwindt GM, Vermeulen FL, et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol. 2001;49(6):753–60.

    Article  CAS  PubMed  Google Scholar 

  27. Guskiewicz KM, McCrea M, Marshall SW, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA concussion study. JAMA J Am Med Assoc. 2003;290(19):2549–55.

    Article  CAS  Google Scholar 

  28. Eisenberg MA, Andrea J, Meehan W, et al. Time interval between concussions and symptom duration. Pediatrics. 2013;132(1):8–17.

    Article  PubMed  Google Scholar 

  29. Babikian T, Satz P, Zaucha K, et al. The UCLA longitudinal study of neurocognitive outcomes following mild pediatric traumatic brain injury. J Int Neuropsychological Soc JINS. 2011;17(5):886–95.

    Article  Google Scholar 

  30. Johnson VE, Stewart JE, Begbie FD, et al. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(pt 1):28–42.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Giza CC, Griesbach GS, Hovda DA. Experience-dependent behavioral plasticity is disturbed following traumatic brain injury to the immature brain. Behav Brain Res. 2005;157(1):11–22.

    Article  PubMed  Google Scholar 

  32. Guskiewicz KM, Valovich McLeod TC. Pediatric sports-related concussion. PM R. 2011;3(4):353–64.

    Article  PubMed  Google Scholar 

  33. Giza CC, Kutcher JS, Ashwal S, et al. Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;80(24):2250–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mihalik JP, Stump JE, Collins MW, et al. Posttraumatic migraine characteristics in athletes following sports-related concussion. J Neurosurg. 2005;102:850–5.

    Article  PubMed  Google Scholar 

  35. Kontos AP, Elbin RJ, Lau B, et al. Posttraumatic migraine as a predictor of recovery and cognitive impairment after sport-related concussion. Am J Sports Med. 2013;41(7):1497–504. This cohort study investigates the predictive value of posttraumatic migraine in the recovery after sports-related concussion. Their findings provide further evidence suggesting that PTM is associated with cognitive impairments and protracted recovery from this injury.

    Article  PubMed  Google Scholar 

  36. Lucas S, Hoffman JM, Bell KR, et al. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia. 2014;34(2):93–102.

    Article  PubMed  Google Scholar 

  37. Zeitlin C, Oddy M. Cognitive impairment in patients with severe migraine. BrJ Clin Pysch. 1984;23(1):27–35.

    Article  Google Scholar 

  38. Zakzanis KK, Leach L, Kaplan E. On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry Neuropsychol Behav Neurol. 1998;11(3):111–9.

    CAS  PubMed  Google Scholar 

  39. Lewis MS, Snyder PJ, Pietrzak RH, et al. The effect of acute increase in urge to void on cognitive function in healthy adults. Neurourol Urodyn. 2011;30(1):183–7.

    Article  CAS  PubMed  Google Scholar 

  40. Landro N, Fors E, Vapenstad L, et al. The extent of neurocognitive dysfunction in a multidisciplinary pain centre population. Is there a relation between reported and tested neuropsychological functioning? Pain. 2013;154(7):972–7.

    Article  PubMed  Google Scholar 

  41. Petraglia, Anthony L, Julian E. Bales, and Arthur L.Day. Handbook of neurological sports medicine. Champaign: Human Kinetics, 2014. Print.

  42. Shaw G. Tracking traumatic brain injury: what new biomarkers may reveal about concussion over the short and long term. Neurology Now. 2014;10(3):24–31.

    Article  Google Scholar 

  43. Di Battista AP, Rhind SG, Baker AJ. Application of blood-based biomarkers in human mild traumatic brain injury. Front Neurol. 2013;4(44):1–7.

    Google Scholar 

  44. Carman A, Ferguson R, Cantu R, et al. “Mind the gaps”: a multi-disciplinary proposal to advance research in short-term and long-term cognitive outcomes following youth sports-related concussions. Nature Reviews Neurology. 2014; in press. This upcoming multi-disciplinary review highlights the current critical gaps in sports concussion research.

  45. Shahim P, Tegner Y, Wilson DH, et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71(6):684–92. This study was the first to measure and compare serial concentrations of the proteins T-tau, S-100β, and NSE post-concussion in professional athletes.

    Article  PubMed  Google Scholar 

  46. Mondella S, Schmid K, Berger R, et al. The challenge of mild traumatic brain injury: role of biochemical markers in diagnosis of brain damage. Med Res Rev. 2014;34(3):503–31.

    Article  Google Scholar 

  47. Yamakazi Y, Yada K, Morri S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol. 1995;43:267–71.

    Article  Google Scholar 

  48. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996;10(5):471–6.

    Article  CAS  PubMed  Google Scholar 

  49. Adamson C, Yuan W, Babcock L, et al. Diffusion tensor imaging detects white matter abnormalities and associated cognitive deficits in chronic adolescent TBI. Brain Inj. 2013;27(4):454–63.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Omalu BI, DeKosky ST, Minster RL, et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery. 2005;57(1):128–34.

    Article  PubMed  Google Scholar 

  51. McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(pt 1):43–64.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Baugh CM, Stamm JM, Riley DO, et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging and Behav. 2012;6(2):244–54.

    Article  Google Scholar 

  53. Mietelska-Porowska A, Wasik U, Goras M, et al. Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 2014;15:4671–713.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Solomon GS, Sills A. Chronic traumatic encephalopathy and the availability cascade. Physician and Sports Med. 2014;42(3):26–31. The authors summarize the most current evidence related to potential long-term adverse effects from repeated sports concussions, including CTE.

    Article  Google Scholar 

  55. Corsellis JA, Bruton CJ, Freeman-Browne D. The aftermath of boxing. Psychol Med. 1973;3(3):270–303.

    Article  CAS  PubMed  Google Scholar 

  56. Martland HS. Punch drunk. JAMA. 1928;91(15):1103–7.

    Article  Google Scholar 

  57. Roberts AH. Brain damage in boxers. London: Pitman Publishing; 1969.

    Google Scholar 

  58. Loosemore M, Knowles CH, Whyte GP. Amateur boxing and risk of chonic traumatic brain injury: systemic review of observational studies. Br J Sports Med. 2008;42:564–7.

    PubMed  Google Scholar 

  59. McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Stern RA, Riley DO, Daneshvar DH, et al. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM R. 2011;3(10 Suppl 2):S460–7.

    Article  PubMed  Google Scholar 

  61. Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30(1):179–88.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  63. Lehman EJ, Hein MJ, Baron SL, et al. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012;79:1970–4.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Barr WB. An evidence based approach to sports concussion: confronting the availability cascade. Neuropsychol Rev. 2013;23:271–2.

    Article  PubMed  Google Scholar 

  65. Andrikopoulos J. Creating a concussion crisis and chronic traumatic encephalopathy. Neurology. 2014;71:654.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Tad Seifert and Victoria Shipman each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tad Seifert.

Additional information

This article is part of the Topical Collection on Concussion and Head Injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, T., Shipman, V. The Pathophysiology of Sports Concussion. Curr Pain Headache Rep 19, 36 (2015). https://doi.org/10.1007/s11916-015-0513-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-015-0513-0

Keywords

Navigation