Skip to main content

Advertisement

Log in

Convergence of cervical and trigeminal sensory afferents

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Cranial nociceptive perception shows a distinct topographic distribution, with the trigeminal nerve receiving sensory information from the anterior portions of the head, the greater occipital nerve, and branches of the upper cervical roots in the posterior regions. However, this distribution is not respected during headache attacks, even if the etiology of the headache is specific for only one nerve. Nociceptive information from the trigeminal and cervical territories activates the neurons in the trigeminal nucleus caudalis that extend to the C2 spinal segment and lateral cervical nucleus in the dorsolateral cervical area. These neurons are classified as multimodal because they receive sensory information from more than one afferent type. Clinically, trigeminal activation produces symptoms in the trigeminal and cervical territory and cervical activation produces symptoms in the cervical and trigeminal territory. The overlap between the trigeminal nerve and cervical is known as a convergence mechanism. For some time, convergence mechanisms were thought to be secondary to clinical observations. However, animal studies and clinical evidence have expanded our knowledge of convergence mechanisms. In this paper, the role of convergence mechanisms in nociceptive physiology, physiopathology of the headaches, clinical diagnosis, and therapeutic conduct are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Goadsby PJ, Lipton RB, Ferrari MD: Migraine: current understanding and treatment. N Engl J Med 2002, 346:257–270.

    Article  PubMed  CAS  Google Scholar 

  2. Anthony M: Headache and the greater occipital nerve. Clin Neurol Neurosurg 1992, 94:297–301.

    Article  PubMed  CAS  Google Scholar 

  3. Kerr FW: A mechanism to account for frontal headache in cases of posterior fosse tumors. J Neurosurg 1961, 18:605–609.

    Article  PubMed  CAS  Google Scholar 

  4. Piovesan EJ, Werneck LC, Teive HA, et al.: Neurophysiology of pain in tentorial irritation: description of a case secondary to medulloblastoma. Arq Neuropsiquiatr 1998, 56:677–682.

    PubMed  CAS  Google Scholar 

  5. Piovesan EJ, Kowacs PA, Tatsui CE, et al.: Referred pain after painful stimulation of the greater occipital nerve in humans: evidence of convergence of cervical afferences on trigeminal nuclei. Cephalalgia 2001, 21:107–109. A clinical study demonstrating connections between the descending root of the fifth cranial nerve and the occipital nerve. The study supports additional information regarding convergent mechanisms, such as time to induce, distribution, associated symptoms, and resolution of the convergent symptoms.

    Article  PubMed  CAS  Google Scholar 

  6. Messlinger K, Hanesch U, Baumgartel M, et al.: Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol (Berl) 1993, 188:219–237.

    CAS  Google Scholar 

  7. Nozaki K, Uemura Y, Okamoto S, et al.: Origins and distribution of cerebrovascular nerve fibers showing calcitonin gene-related peptide-like immunoreactivity in the major cerebral artery of the dog. J Comp Neurol 1990, 297:219–226.

    Article  PubMed  CAS  Google Scholar 

  8. Burstein R, Yamamura H, Malick A, Strassman AM: Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 1998, 79:964–982.

    PubMed  CAS  Google Scholar 

  9. Schepelmann K, Ebersberger A, Pawlak M, et al.: Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience 1999, 90:543–554.

    Article  PubMed  CAS  Google Scholar 

  10. Kaube H, Keay K, Hoskin KL, et al.: Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 1993, 629:95–102.

    Article  PubMed  CAS  Google Scholar 

  11. Strassman AM, Mineta Y, Vos BP: Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 1994, 14:3725–3735.

    PubMed  CAS  Google Scholar 

  12. Lambert GA, Zagami AS, Bogduk N, Lance JW: Cervical spinal cord neurons receiving sensory input from the cranial vasculature. Cephalalgia 1991, 11:75–85.

    Article  PubMed  CAS  Google Scholar 

  13. Angus-Leppan H, Olausson B, Boers P, Lambert GA: Convergence of afferents from superior sagitttal sinus and tooth pulp on cells in the upper cervical spinal cord of the cat. Neurosci Lett 1994, 182:275–278.

    Article  PubMed  CAS  Google Scholar 

  14. Schaible HG, Ebersberger A, Peppel P, et al.: Release of immunoreactive substance P in the trigeminal brain stem nuclear complex evoked by chemical stimulation of the nasal mucosa and the dura mater encephali: a study with antibody microphobes. Neuroscience 1997, 76:273–284.

    Article  PubMed  CAS  Google Scholar 

  15. Pfaller K, Arvidsson J: Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 1988, 268:91–108.

    Article  PubMed  CAS  Google Scholar 

  16. Scheurer S, Gottschall J, Groh V: Afferent projections of the rat major occipital nerve studied by transganglionic transport of HRP. Anat Embryol (Berl) 1983, 167:425–438.

    Article  CAS  Google Scholar 

  17. Angus-Leppan H, Lambert GA, Michalicek J: Convergence of occipital nerve and superior sagittal sinus input in the cervical spinal cord of the cat. Cephalalgia 1997, 17:625–630.

    Article  PubMed  CAS  Google Scholar 

  18. Kajander KC, Giesler GJ Jr: Responses of neurons in the lateral cervical nucleus of the cat to noxious cutaneous stimulation. J Neurophysiol 1987, 57:1686–1704.

    PubMed  CAS  Google Scholar 

  19. Piovesan EJ, Young BW, Werneck LC, et al.: Recurrent extratrigeminal stabbing and burning sensation with allodynia in a migraine patient. Cephalalgia 2003, 23:231–234.

    Article  PubMed  CAS  Google Scholar 

  20. Chandler MJ, Zhang J, Foreman RD: Vagal, sympathetic and somatic sensory inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys. J Neurophysiol 1996, 76:2555–2567.

    PubMed  CAS  Google Scholar 

  21. Chandler MJ, Zhang J, Qin C, et al.: Intrapericardiac injections of algogenic chemicals excite primate C1-C2 spinothalamic tract neurons. Am J Physiol Regul Integr Comp Physiol 2000, 279:560–568.

    Google Scholar 

  22. Bereiter DA, Bereiter DF, Hirata H, Hu JW: c-Fos expression in trigeminal spinal nucleus after electrical stimulation of the hypoglossal nerve in the rat. Somatosens Mot Res 2000, 17:229–237.

    Article  PubMed  CAS  Google Scholar 

  23. Goadsby PJ, Hoskin KL: The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J Anat 1997, 190:367–375.

    Article  PubMed  Google Scholar 

  24. Strassman AM, Mineta Y, Vos BP: Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 1994, 14:3725–3735.

    PubMed  CAS  Google Scholar 

  25. Hoskin KL, Kaube H, Goadsby PJ: Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine: a c-fos and electrophysiology study. Brain 1996, 119:249–256.

    Article  PubMed  Google Scholar 

  26. Nozaki K, Boccalini P, Moskowitz MA: Expression of c-fos-like immunoreactivity in brain stem after meningeal irritation by blood in the subarachnoid space. Neuroscience 1992, 49:669–680.

    Article  PubMed  CAS  Google Scholar 

  27. Hoskin KL, Zagami AS, Goadsby PJ: Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat 1999, 194:579–588.

    Article  PubMed  CAS  Google Scholar 

  28. Goadsby PJ, Zagami AS: Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brain stem and upper cervical spinal cord of the cat. Brain 1991, 114:1001–1011.

    Article  PubMed  Google Scholar 

  29. Goadsby PJ, Knight YE, Hoskin KL: Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat. Pain 1997, 73:23–28.

    Article  PubMed  CAS  Google Scholar 

  30. Li JL, Wang D, Kaneko T, et al.: The relationship between neurokinin-1 receptor and substance P in the medullary dorsal horn: a light and electron microscopic immunohistochemical study in the rat. Neurosci Res 2000, 36:327–334.

    Article  PubMed  CAS  Google Scholar 

  31. Sabino MAC, Honore P, Rogers SD, et al.: Tooth extractioninduced internalization of the substance P receptor in trigeminal nucleus and spinal cord neurons: imaging the neurochemistry of dental pain. Pain 2002, 95:175–186.

    Article  PubMed  CAS  Google Scholar 

  32. Sartucci F, Rossi A, Rossi B: Trigemino-cervical reflex in man. Electromyogr Clin Neurophysiol 1986, 26:123–129.

    PubMed  CAS  Google Scholar 

  33. Milanov I, Bogdanova D: Trigemino-cervical reflex in patients with headache. Cephalalgia 2003, 23:35–38.

    Article  PubMed  CAS  Google Scholar 

  34. Sandkuhler J, Benrath J, Brechtel C, et al.: Synaptic mechanisms of hyperalgesia. Prog Brain Res 2000, 129:81–100.

    Article  PubMed  CAS  Google Scholar 

  35. Bartsch T, Goadsby PJ: Stimulation of greater occipital nerve induces increased central excitability of dural afferent input. Brain 2002, 125:1496–1509. This article supports the view of a functional continuum between the caudal trigeminal nucleus and upper cervical segments involved in cranial nociception. This research showed that the facilitatory effect of GON stimulation on dural stimulation suggests a central sensitization mechanism.

    Article  PubMed  Google Scholar 

  36. Ellrich J, Andersen OK, Messlinger K, Arendt-Nielsen L: Convergence of meningeal and facial afferents onto trigeminal brain stem neurons: an electrophysiological study in rat and man. Pain 1999, 82:229–237.

    Article  PubMed  CAS  Google Scholar 

  37. Cook AJ, Woolf CJ, Wall PD, McMahon SB: Dynamic receptive field plasticity in rat spinal cord dorsal horn following Cprimary afferent input. Nature 1987, 325:151–153.

    Article  PubMed  CAS  Google Scholar 

  38. Hutchinson PJ, Pickard JD, Higgins JN: Vertebral artery dissection presenting as cerebellar infarction. J Neurol Neurosurg Psychiatry 2000, 68:98–99.

    Article  PubMed  CAS  Google Scholar 

  39. Kowacs PA, Piovesan EJ, Werneck LC, et al.: Influence of intense light stimulation on trigeminal and cervical pain perception thresholds. Cephalalgia 2001, 21:184–188.

    Article  PubMed  CAS  Google Scholar 

  40. Antonaci F, Fredriksen TA, Sjaastad O: Cervicogenic headache: clinical presentation, diagnostic criteria, and differential diagnosis. Curr Pain Headache Rep 2001, 5:387–392.

    Article  PubMed  CAS  Google Scholar 

  41. Hoskin KL, Kaube H, Goadsby PJ: Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain 1996, 119:1419–1428.

    Article  PubMed  Google Scholar 

  42. Shepheard SL, Williamson DJ, Williams J, et al.: Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in the dura mater and c-fos mRNA expression in the trigeminal nucleus caudalis of rats. Neuropharmacology 1995, 34:255–261.

    Article  PubMed  CAS  Google Scholar 

  43. Goadsby PJ, Akerman S, Storer RJ: Evidence for post junctional serotonin (5-HT1) receptors in the trigeminocervical complex. Ann Neurol 2001, 50:804–807.

    Article  PubMed  CAS  Google Scholar 

  44. Goadsby PJ: The pharmacology of headache. Prog Neurobiol 2000, 62:509–525.

    Article  PubMed  CAS  Google Scholar 

  45. Storer RJ, Akerman S, Goadsby PJ: Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol 2003, 138:317–324.

    Article  PubMed  CAS  Google Scholar 

  46. Cutrer FM, Limmroth V, Ayata G, Moskowitz MA: Attenuation by valproate of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 1995, 116:3199–3204.

    PubMed  CAS  Google Scholar 

  47. Storer RJ, Akerman S, Goadsby PJ: GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol 2001, 134:896–904.

    Article  PubMed  CAS  Google Scholar 

  48. Anthony M: The role of the occipital nerve in unilateral headache. In Current Problems in Neurology, edn 4: Advances in Headache Research. Edited by Rose FC. London: John Libbey; 1987:257–262.

    Google Scholar 

  49. Peres MF, Stiles MA, Siow HC, et al.: Greater occipital nerve blockade for cluster headache. Cephalalgia 2002, 22:520–522.

    Article  PubMed  CAS  Google Scholar 

  50. Bigo A, Delrieu F, Bousser MG: Treatment of vascular pain of the face by methylprednisolone injection into the area of the greater occipital nerve: 16 cases. Rev Neurol (Paris) 1989, 145:160–162.

    CAS  Google Scholar 

  51. Antonaci F, Pareja JA, Caminero AB, Sjaastad O: Chronic paroxysmal hemicrania continua: anaesthetic blockades of pericranial nerves. Funct Neurol 1997, 12:11–15.

    PubMed  CAS  Google Scholar 

  52. Caputi CA, Firetto V, Luzi FM: Il blocco anestetico del nervo grande occipitale nelle cefalee primarie: considerazioni a proposito di quattro casi di coomplessa interpretazione. Confinia Cephalalgica 1994, 1:27–33.

    Google Scholar 

  53. Matharu MS, Bartsch T, Ward N, et al.: Central neuromodulation in chronic migraine with implanted suboccipital stimulators. Neurology 2003, 60(suppl 1):A404-A405.

    Google Scholar 

  54. Piovesan EJ, Werneck LC, Kowacs PA, et al.: Anesthetic blockade of the greater occipital nerve in migraine prophylaxis. Arq Neuropsiquiatr 2001, 59:545–551.

    PubMed  CAS  Google Scholar 

  55. Terzi T, Karakurum B, Ucler S, et al.: Greater occipital nerve blockade in migraine, tension-type headache and cervicogenic headache. J Headache Pain 2002, 3:137–141.

    Article  Google Scholar 

  56. Caputi CA, Firetto V: Therapeutic blockade of greater occipital and supraorbital nerves in migraine patients. Headache 1997, 37:174–179.

    Article  PubMed  CAS  Google Scholar 

  57. Piovesan EJ, Kowacs PA, Lange MC, et al.: Can the biologic pattern of cervicogenic headache change after overuse or withdrawal of ergotamine derivatives? Arq Neuropsiquiatr 2000, 58:336–341.

    PubMed  CAS  Google Scholar 

  58. Bossut DF, Whitsel EA, Maixner W: A parametric analysis of the effects of cardiopulmonary vagal electrostimulation on the digastric reflex in cats. Brain Res 1992, 579:253–260.

    Article  PubMed  CAS  Google Scholar 

  59. Nishikawa Y, Koyama N, Yoshida Y, Yokota T: Activation of ascending antinociceptive system by vagal afferent input as revealed in the nucleus ventralis posteromedialis. Brain Res 1999, 833:108–111.

    Article  PubMed  CAS  Google Scholar 

  60. Ren K, Zhuo M, Randich A, Gebhart GF: Vagal afferent stimulationproduced effects on nociception in capsaicin-treated rats. J Neurophysiol 1993, 69:1530–1540.

    PubMed  CAS  Google Scholar 

  61. Bossut DF, Maixner W: Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain 1996, 65:101–109.

    Article  PubMed  CAS  Google Scholar 

  62. Ren K, Randich A, Gebhart GF: Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors. Brain Res 1988, 446:285–294.

    Article  PubMed  CAS  Google Scholar 

  63. Aicher SA, Lewis SJ, Randich A: Antinociception produced by electrical stimulation of vagal afferents: independence of cervical and subdiaphagmatic branches. Brain Res 1991, 542:63–70.

    Article  PubMed  CAS  Google Scholar 

  64. Bohotin C, Scholsem M, Multon S, et al.: Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain 2003, 101:3–12.

    Article  PubMed  CAS  Google Scholar 

  65. Takeda M, Tanimoto T, Ojima K, Matsumoto S: Suppressive effect of vagal afferents on the activity of the trigeminal spinal neurons related to the jaw-opening reflex in rats: involvement of the endogenous opioid system. Brain Res Bull 1998, 47:49–56.

    Article  PubMed  CAS  Google Scholar 

  66. Sherman SE, Luo L, Dostrovsky JO: Spinal strychnine alters response properties of nociceptive-specific neurons in rat medial thalamus. J Neurophysiol 1997, 78:628–637.

    PubMed  CAS  Google Scholar 

  67. Malick A, Strassman RM, Burstein R: Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 2000, 84:2078–2112.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piovesan, E.J., Kowacs, P.A. & Oshinsky, M.L. Convergence of cervical and trigeminal sensory afferents. Current Science Inc 7, 377–383 (2003). https://doi.org/10.1007/s11916-003-0037-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-003-0037-x

Keywords

Navigation