Skip to main content

Advertisement

Log in

From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA).

Recent Findings

The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression.

Summary

Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20:739–44.

    Article  PubMed  Google Scholar 

  2. Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri-Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52:491–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Øiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37:1434–43.

    Article  PubMed  Google Scholar 

  4. Lattermann C, Jacobs CA, Proffitt Bunnell M, Huston LJ, Gammon LG, Johnson DL, et al. A multicenter study of early anti-inflammatory treatment in patients with acute anterior cruciate ligament tear. Am J Sports Med. 2017;45:325–33.

    Article  PubMed  Google Scholar 

  5. Friel NA, Chu CR. The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clin Sports Med. 2013;32:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention. Best Pract Res Clin Rheumatol. Elsevier BV. 2014;28:17–30.

    Google Scholar 

  7. Lattermann C, Proffitt M, Huston LJ, Gammon L, Johnson DL, Kraus VB, et al. Multicenter orthopaedic outcome network early anti-inflammatory treatment in patients with acute ACL tear (MOON-AAA) clinical trial. Orthop J Sports Med. SAGE Publications. 2016;4:2325967116S0018.

    Article  Google Scholar 

  8. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82.

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–18.

    Article  PubMed  Google Scholar 

  10. Tsuchida AI, Beekhuizen M, Rutgers M, van Osch GJVM, Bekkers JEJ, Bot AGJ, et al. Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther. 2012;14:R262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lubberts E, Joosten LA, van de Loo FA, van den Gersselaar LA, van den Berg WB. Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum. 2000;43:1300–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lattermann C, Conley CE-W, Johnson DL, Reinke EK, Huston LJ, Huebner JL, et al. Select biomarkers on the day of anterior cruciate ligament reconstruction predict poor patient-reported outcomes at 2-year follow-up: a pilot study. Biomed Res Int. 2018;2018:9387809.

    Article  PubMed  PubMed Central  Google Scholar 

  13. King JD, Rowland G, Villasante Tezanos AG, Warwick J, Kraus VB, Lattermann C, et al. Joint fluid proteome after anterior cruciate ligament rupture reflects an acute posttraumatic inflammatory and chondrodegenerative state. Cartilage. 2018:1947603518790009.

  14. Amano K, Huebner JL, Stabler TV, Tanaka M, McCulloch CE, Lobach I, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. Am J Sports Med. 2018;46:890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. •• Irie K, Uchiyama E, Iwaso H. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee. 2003;10:93–6. An interesting study investigating the acute inflammatory response and pro-inflammatory cytokine release in the synovial fluid after anterior cruciate ligament injury.

  16. Waly NE, Refaiy A, Aborehab NM. IL-10 and TGF-β: roles in chondroprotective effects of glucosamine in experimental osteoarthritis? Pathophysiol. 2017;24:45–9.

    Article  CAS  Google Scholar 

  17. Deligne C, Casulli S, Pigenet A, Bougault C, Campillo-Gimenez L, Nourissat G, et al. Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthritis Cartilage. 2015;23:1843–52.

    Article  CAS  PubMed  Google Scholar 

  18. Lu J, Feng X, Zhang H, Wei Y, Yang Y, Tian Y, et al. Maresin-1 suppresses IL-1β-induced MMP-13 secretion by activating the PI3K/AKT pathway and inhibiting the NF-κB pathway in synovioblasts of an osteoarthritis rat model with treadmill exercise. Connect Tissue Res. Informa UK Limited. 2021;62:508–18.

    Article  CAS  PubMed  Google Scholar 

  19. Perretti M, Cooper D, Dalli J, Norling LV. Immune resolution mechanisms in inflammatory arthritis. Nat Rev Rheumatol. 2017;13:87–99.

    Article  CAS  PubMed  Google Scholar 

  20. Yang YH, Morand EF, Getting SJ, Paul-Clark M, Liu DL, Yona S, et al. Modulation of inflammation and response to dexamethasone by annexin 1 in antigen-induced arthritis. Arthritis Rheum. 2004;50:976–84.

    Article  CAS  PubMed  Google Scholar 

  21. •• Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7:a016311. An important study showing the structure and functional roles of these novel lipid mediators (specialized pro-resolving mediators) of resolution.

  22. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol Ann Rev. 2007;25:101–37.

    Article  CAS  Google Scholar 

  23. Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta. Elsevier BV. 2010;1801:1260–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perretti M, Norling LV. Actions of SPM in regulating host responses in arthritis. Mol Aspects Med. Elsevier BV. 2017;58:57–64.

    Article  CAS  PubMed  Google Scholar 

  25. Gronert K, Maheshwari N, Khan N, Hassan IR, Dunn M, Laniado Schwartzman M. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J Biol Chem. Elsevier BV; 2005;280:15267–15278.

  26. Hsiao H-M, Thatcher TH, Colas RA, Serhan CN, Phipps RP, Sime PJ. Resolvin D1 reduces emphysema and chronic inflammation. Am J Pathol. 2015;185:3189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benabdoun HA, Kulbay M, Rondon E-P, Vallières F, Shi Q, Fernandes J, et al. In vitro and in vivo assessment of the proresolutive and antiresorptive actions of resolvin D1: relevance to arthritis. Arthritis Res Ther. Springer Science and Business Media LLC. 2019;21:72.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Benabdoune H, Rondon E-P, Shi Q, Fernandes J, Ranger P, Fahmi H, et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. Inflamm Res Springer Sci Bus. Media LLC. 2016;65:635–45.

    CAS  Google Scholar 

  29. Conte FP, Menezes-de-Lima O Jr, Verri WA Jr, Cunha FQ, Penido C, Henriques MG. Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br J Pharmacol. Wiley. 2010;161:911–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lima-Garcia JF, Dutra RC, da Silva K, Motta EM, Campos MM, Calixto JB. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br J Pharmacol. Wiley. 2011;164:278–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin S, Chen H, Li Y, Zhong H, Sun W, Wang J, et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Ann Rheum Dis. 2018;77:1644–52.

    Article  CAS  PubMed  Google Scholar 

  32. Allen BL, Montague-Cardoso K, Simeoli R, Colas RA, Oggero S, Vilar B. Imbalance of pro-resolving lipid mediators in persistent allodynia dissociated from signs of clinical arthritis. Pain. 2020;161:2155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arnardottir HH, Dalli J, Norling LV, Colas RA, Perretti M, Serhan CN. Resolvin D3 is dysregulated in arthritis and reduces arthritic inflammation. J Immunol. 2016;197:2362–8.

    Article  CAS  PubMed  Google Scholar 

  34. Sano Y, Toyoshima S, Miki Y, Taketomi Y, Ito M, Lee H, et al. Activation of inflammation and resolution pathways of lipid mediators in synovial fluid from patients with severe rheumatoid arthritis compared with severe osteoarthritis. Asia Pac Allergy Asia Pac Assoc Allergy, Asthma, Clin Immunol. 2020;10:e21.

    Google Scholar 

  35. Hashimoto A, Hayashi I, Murakami Y, Sato Y, Kitasato H, Matsushita R, et al. Antiinflammatory mediator lipoxin A4 and its receptor in synovitis of patients with rheumatoid arthritis. J Rheumatol. 2007;34:2144–53.

    CAS  PubMed  Google Scholar 

  36. Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-inflammatory therapeutic approaches to prevent or delay post-traumatic osteoarthritis (PTOA) of the knee joint with a focus on sustained delivery approaches. Int J Mol Sci. MDPI AG. 2021;22:8005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacobs CA, Conley CEW, Kraus VB, Lansdown DA, Lau BC, Li X, et al. MOntelukast as a potential CHondroprotective treatment following Anterior cruciate ligament reconstruction (MOCHA trial): study protocol for a double-blind, randomized, placebo-controlled clinical trial. Trials. Springer Sci Bus. Media LLC; 2022;23:98.

  38. Chaudhari AMW, Briant PL, Bevill SL, Koo S, Andriacchi TP. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc. Ovid Technologies (Wolters Kluwer Health); 2008;40:215–222.

  39. Swärd P, Frobell R, Englund M, Roos H, Struglics A. Cartilage and bone markers and inflammatory cytokines are increased in synovial fluid in the acute phase of knee injury (hemarthrosis)--a cross-sectional analysis. Osteoarthritis Cartilage. Elsevier BV. 2012;20:1302–8.

    Article  PubMed  Google Scholar 

  40. Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, et al. The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med. 1997;25:751–4.

    Article  CAS  PubMed  Google Scholar 

  41. Harkey MS, Luc BA, Golightly YM, Thomas AC, Driban JB, Hackney AC, et al. Osteoarthritis-related biomarkers following anterior cruciate ligament injury and reconstruction: a systematic review. Osteoarthritis Cartilage. Elsevier BV. 2015;23:1–12.

    Article  CAS  PubMed  Google Scholar 

  42. Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD, Hulstyn MJ, et al. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. Wiley. 2008;58:1707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marks PH, Donaldson MLC. Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate ligament-deficient knee. Arthroscopy. Elsevier BV. 2005;21:1342–7.

    Article  PubMed  Google Scholar 

  44. El-Hadi M, Charavaryamath C, Aebischer A, Smith CW, Shmon C, Singh B. Expression of interleukin-8 and intercellular cell adhesion molecule-1 in the synovial membrane and cranial cruciate ligament of dogs after rupture of the ligament. Can J Vet Res. 2012;76:8–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrándiz ML, Terencio MC, Ruhí R, Vergés J, Montell E, Torrent A, et al. Influence of age on osteoarthritis progression after anterior cruciate ligament transection in rats. Exp Gerontol. Elsevier BV. 2014;55:44–8.

    Article  PubMed  Google Scholar 

  46. Shen P-C, Lu C-S, Shiau A-L, Lee C-H, Jou I-M, Hsieh J-L. Lentiviral small hairpin RNA knockdown of macrophage inflammatory protein-1γ ameliorates experimentally induced osteoarthritis in mice. Hum Gene Ther. Mary Ann Liebert Inc. 2013;24:871–82.

    CAS  Google Scholar 

  47. Gilbert SJ, Bonnet CS, Stadnik P, Duance VC, Mason DJ, Blain EJ. Inflammatory and degenerative phases resulting from anterior cruciate rupture in a non-invasive murine model of post-traumatic osteoarthritis. J Orthop Res [Internet]. 2018; Available from: https://doi.org/10.1002/jor.23872

  48. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis BMJ. 2005;64:1263–7.

    Article  CAS  Google Scholar 

  49. Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther. Springer. Nature. 2006;8:R187.

    Google Scholar 

  50. Manferdini C, Paolella F, Gabusi E, Silvestri Y, Gambari L, Cattini L, et al. From osteoarthritic synovium to synovial-derived cells characterization: synovial macrophages are key effector cells, vol. 18. Arthritis Res Ther. Springer Science and Business Media LLC; 2016. p. 83.

    Google Scholar 

  51. Lemburg AK, Meyer-Lindenberg A, Hewicker-Trautwein M. Immunohistochemical characterization of inflammatory cell populations and adhesion molecule expression in synovial membranes from dogs with spontaneous cranial cruciate ligament rupture. Vet Immunol Immunopathol. Elsevier BV. 2004;97:231–40.

    Article  CAS  PubMed  Google Scholar 

  52. Sun AR, Wu X, Liu B, Chen Y, Armitage CW, Kollipara A, et al. Pro-resolving lipid mediator ameliorates obesity induced osteoarthritis by regulating synovial macrophage polarisation. Sci Rep. 2019;9:426.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Blom AB, van Lent PLEM, Holthuysen AEM, van der Kraan PM, Roth J, van Rooijen N, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage. Elsevier BV. 2004;12:627–35.

    Article  PubMed  Google Scholar 

  54. Muir P, Kelly JL, Marvel SJ, Heinrich DA, Schaefer SL, Manley PA, et al. Lymphocyte populations in joint tissues from dogs with inflammatory stifle arthritis and associated degenerative cranial cruciate ligament rupture. Vet Surg. Wiley. 2011;40:753–61.

    Article  PubMed  Google Scholar 

  55. Bigoni M, Sacerdote P, Turati M, Franchi S, Gandolla M, Gaddi D, et al. Acute and late changes in intraarticular cytokine levels following anterior cruciate ligament injury. J Orthop Res. Wiley. 2013;31:315–21.

    Article  CAS  PubMed  Google Scholar 

  56. Cameron ML, Fu FH, Paessler HH, Schneider M, Evans CH. Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc. Springer Science and Business Media LLC. 1994;2:38–44.

    Article  CAS  PubMed  Google Scholar 

  57. Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res. Ovid Technologies (Wolters Kluwer Health). 2006;442:39–44.

    Article  PubMed  Google Scholar 

  58. •• Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35:1756–69. An important study showing that a significant proportion of individuals, including athletes and the general population, develop osteoarthritis and experience pain and functional limitations in the affected knee joints over a long-term period, even 10 to 20 after anterior cruciate ligament injury.

  59. O’Brien EJO, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, Shrive NG, et al. Osteoarthritis develops in the operated joint of an ovine model following ACL reconstruction with immediate anatomic reattachment of the native ACL. J Orthop Res. Wiley. 2013;31:35–43.

    Article  PubMed  Google Scholar 

  60. Heard BJ, Solbak NM, Achari Y, Chung M, Hart DA, Shrive NG, et al. Changes of early post-traumatic osteoarthritis in an ovine model of simulated ACL reconstruction are associated with transient acute post-injury synovial inflammation and tissue catabolism. Osteoarthr Cartil. Elsevier BV. 2013;21:1942–9.

    Article  CAS  Google Scholar 

  61. • Hunt ER, Jacobs CA, Conley CE-W, Ireland ML, Johnson DL, Lattermann C. Anterior cruciate ligament reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. J Orthop Res. Wiley; 2021;39:1281–8. An interesting study demonstrating that anterior cruciate ligament reconstruction results in the production of pro-inflammatory cytokines and cartilage degradation.

  62. Larsson S, Struglics A, Lohmander LS, Frobell R. Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: an exploratory analysis in the KANON trial. Osteoarthr Cartil. 2017;25:1443–51.

    Article  CAS  Google Scholar 

  63. Lattermann C, Jacobs CA, Whale C, Jochimsen K, Johnson DL, Reinke E, et al. Biomarkers on the day of ACL reconstruction and sex predictive of knee-related quality of Life at 2-year follow-up. Orthop J Sports Med. SAGE Publications. 2017;5:2325967117S0012.

    Article  Google Scholar 

  64. Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr Rheumatol Rep. Springer Science and Business Media LLC; 2014;16:448.

  65. Bondeson J, Blom AB, Wainwright S, Hughes C, Caterson B, van den Berg WB. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum. Wiley. 2010;62:647–57.

    Article  CAS  PubMed  Google Scholar 

  66. Pham TM, Erichsen JL, Kowal JM, Overgaard S, Schmal H. Elevation of pro-inflammatory cytokine levels following intra-articular fractures-a systematic review. Cells [Internet]. 2021;10. Available from: https://doi.org/10.3390/cells10040902

  67. • Lohmander LS, Atley LM, Pietka TA, Eyre DR. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum. Wiley; 2003;48:3130–9. An interesting study showing the release of soluble molecular fragments of collagen into the synovial fluid of humans with osteoarthritis and after joint injury. This suggests that collagen type II is impaired immediately after a joint injury and in cases of arthritis.

  68. Palmieri-Smith RM, Wojtys EM, Potter HG. Early cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers—a pilot study. Arthrosc. Elsevier BV. 2016;32:1309–18.

    Article  Google Scholar 

  69. Lattermann C, Jacobs CA, Bunnell MP, Jochimsen KN, Abt JP, Reinke EK, et al. Logistical challenges and design considerations for studies using acute anterior cruciate ligament injury as a potential model for early posttraumatic osteoarthritis. J Orthop Res. Wiley. 2017;35:641–50.

    Article  PubMed  Google Scholar 

  70. Golightly YM, Marshall SW, Kraus VB, Renner JB, Villaveces A, Casteel C, et al. Biomarkers of incident radiographic knee osteoarthritis: do they vary by chronic knee symptoms? Arthritis Rheum. Wiley. 2011;63:2276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jacobs CA, Hunt ER, Conley CE-W, Johnson DL, Stone AV, Huebner JL, et al. Dysregulated inflammatory response related to cartilage degradation after ACL injury. Med Sci Sports Exerc. Ovid Technologies (Wolters Kluwer Health). 2020;52:535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Casagrande R, Verri WA Jr. Specialized pro-resolving lipid mediators: a new class of non-immunosuppressive and non-opioid analgesic drugs. Pharmacol Res. Elsevier BV. 2020;151:104549.

    Article  CAS  PubMed  Google Scholar 

  73. Markworth JF, Vella L, Lingard BS, Tull DL, Rupasinghe TW, Sinclair AJ, et al. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol. American Physiological Society. 2013;305:R1281–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chan MM-Y, Moore AR. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J Immunol. The American Association of Immunologists. 2010;184:6418–26.

    Article  CAS  PubMed  Google Scholar 

  75. Rudnik-Jansen I, Tellegen AR, Pouran B, Schrijver K, Meij BP, Emans PJ, et al. Local controlled release of corticosteroids extends surgically induced joint instability by inhibiting tissue healing. Br J Pharmacol. Wiley. 2019;176:4050–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. Springer Science and Business Media LLC. 2005;6:1191–7.

    Article  CAS  PubMed  Google Scholar 

  77. Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. Springer Science and Business Media LLC. 2016;16:51–67.

    Article  CAS  PubMed  Google Scholar 

  78. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: what controls its onset? Front Immunol. 2016;7:160.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. Elsevier BV. 2010;140:771–6.

    Article  CAS  PubMed  Google Scholar 

  80. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med. EMBO. 2013;5:661–74.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chandrasekharan JA, Sharma-Walia N. Lipoxins: nature’s way to resolve inflammation. J Inflamm Res. Dove Medical Press Ltd. 2015;8:181–92.

    PubMed  PubMed Central  Google Scholar 

  83. Headland SE, Norling LV. The resolution of inflammation: principles and challenges. Semin Immunol. Elsevier BV. 2015;27:149–60.

    Article  CAS  PubMed  Google Scholar 

  84. Schett G, Neurath MF. Resolution of chronic inflammatory disease: universal and tissue-specific concepts, vol. 9. Nat Commun. Springer Science and Business Media LLC; 2018. p. 3261.

    Google Scholar 

  85. Lawrence T, Gilroy DW. Chronic inflammation: a failure of resolution? Int J Exp Pathol. Wiley. 2007;88:85–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krashia P, Cordella A, Nobili A, La Barbera L, Federici M, Leuti A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun [Internet]. Springer Science and Business Media LLC; 2019;10. Available from: https://doi.org/10.1038/s41467-019-11928-w

  87. Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA, Dorweiler B, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques, vol. 7. Nat Commun. Springer Science and Business Media LLC; 2016. p. 12859.

    Google Scholar 

  88. Levy BD, Bonnans C, Silverman ES, Palmer LJ, Marigowda G, Israel E, et al. Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med. American Thoracic Society. 2005;172:824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yacoubian S, Serhan CN. New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases. Nat Clin Pract Rheumatol. Springer Science and Business Media LLC; 2007;3:570–9; quiz 1 p following 589.

  90. Eritja N, Jové M, Fasmer KE, Gatius S, Portero-Otin M, Trovik J, et al. Tumour-microenvironmental blood flow determines a metabolomic signature identifying lysophospholipids and resolvin D as biomarkers in endometrial cancer patients. Oncotarget Impact J LLC. 2017;8:109018–26.

    Article  Google Scholar 

  91. Hashimoto A, Endo H, Hayashi I, Murakami Y, Kitasato H, Kono S, et al. Differential expression of leukotriene B4 receptor subtypes (BLT1 and BLT2) in human synovial tissues and synovial fluid leukocytes of patients with rheumatoid arthritis. J Rheumatol. 2003;30:1712–8.

    CAS  PubMed  Google Scholar 

  92. Emre C, Hjorth E, Bharani K, Carroll S, Granholm A-C, Schultzberg M. Receptors for pro-resolving mediators are increased in Alzheimer’s disease brain. Brain Pathol. Wiley. 2020;30:614–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. León IC, Quesada-Vázquez S, Sáinz N, Guruceaga E, Escoté X, Moreno-Aliaga MJ. Effects of Maresin 1 (MaR1) on colonic inflammation and gut dysbiosis in diet-induced obese mice. Microorganisms. MDPI AG. 2020;8:1156.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D, Clark AJ, Flower RJ, Perretti M. Ligandspecific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci U S A. 2013;110(45):18232–7. https://doi.org/10.1073/pnas.1308253110.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Corminboeuf O, Leroy X. FPR2/ALXR agonists and the resolution of inflammation. J Med Chem. American Chemical Society (ACS). 2015;58:537–59.

    Article  CAS  PubMed  Google Scholar 

  96. Croasdell A, Thatcher TH, Kottmann RM, Colas RA, Dalli J, Serhan CN, et al. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am J Physiol Lung Cell Mol Physiol. American Physiological Society. 2015;309:L888–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hammock BD, Wang W, Gilligan MM, Panigrahy D. Eicosanoids: the overlooked storm in coronavirus disease 2019 (COVID-19)? Am J Pathol. Elsevier BV. 2020;190:1782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gomez EA, Colas RA, Souza PR, Hands R, Lewis MJ, Bessant C, et al. Blood pro-resolving mediators are linked with synovial pathology and are predictive of DMARD responsiveness in rheumatoid arthritis, vol. 11. Nat Commun. Springer Science and Business Media LLC; 2020. p. 5420.

    Google Scholar 

  99. Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. Wiley. 2017;31:1273–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fattori V, Pinho-Ribeiro FA, Staurengo-Ferrari L, Borghi SM, Rossaneis AC, Casagrande R, et al. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br J Pharmacol. Wiley. 2019;176:1728–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, Behbehani B, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. The American Association of Immunologists. 2003;171:6856–65.

    Article  CAS  PubMed  Google Scholar 

  103. Krönke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, Schabbauer G, et al. 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol. The American Association of Immunologists. 2009;183:3383–9.

    Article  PubMed  Google Scholar 

  104. McReynolds CB, Hwang SH, Yang J, Wan D, Wagner K, Morisseau C, et al. Pharmaceutical effects of inhibiting the soluble epoxide hydrolase in canine osteoarthritis. Front Pharmacol. Frontiers Media SA. 2019;10:533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Trindade-da-Silva CA, Clemente-Napimoga JT, Abdalla HB, Rosa SM, Ueira-Vieira C, Morisseau C, et al. Soluble epoxide hydrolase inhibitor, TPPU, increases regulatory T cells pathway in an arthritis model. FASEB J. Wiley. 2020;34:9074–86.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang L, Zhang X, Wu P, Li H, Jin S, Zhou X, et al. BML-111, a lipoxin receptor agonist, modulates the immune response and reduces the severity of collagen-induced arthritis, vol. 57. Inflamm Res. Springer Science and Business Media LLC; 2008. p. 157–62.

    Google Scholar 

  107. Sun W, Ma J, Zhao H, Xiao C, Zhong H, Ling H, et al. Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res Ther. 2020;22:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Flak MB, Koenis DS, Sobrino A, Smith J, Pistorius K, Palmas F, et al. GPR101 mediates the pro-resolving actions of RvD5n-3 DPA in arthritis and infections. J Clin Invest. American Society for Clinical Investigation. 2020;130:359–73.

    Article  CAS  PubMed  Google Scholar 

  109. Luo X, Gu Y, Tao X, Serhan CN, Ji R-R. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy. Front Pharmacol. Frontiers Media SA. 2019;10:745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao J, Tang C, Tai LW, Ouyang Y, Li N, Hu Z, et al. Pro-resolving mediator maresin 1 ameliorates pain hypersensitivity in a rat spinal nerve ligation model of neuropathic pain. J Pain Res. 2018;11:1511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang T, Xu G, Newton PT, Chagin AS, Mkrtchian S, Carlström M, et al. Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br J Anaesth. 2019;122:350–60.

    Article  CAS  PubMed  Google Scholar 

  112. Wang CW, Yu SH, Fretwurst T, Larsson L, Sugai JV, Oh J, et al. Maresin 1 promotes wound healing and socket bone regeneration for alveolar ridge preservation. J Dent Res. SAGE Publications. 2020;99:930–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang R, Vi L, Zong X, Baht GS. Maresin 1 resolves aged-associated macrophage inflammation to improve bone regeneration. FASEB J. Wiley. 2020;34:13521–32.

    Article  CAS  PubMed  Google Scholar 

  114. Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y, et al. The therapeutic effects of lipoxin A4 during treadmill exercise on monosodium iodoacetate-induced osteoarthritis in rats. Mol Immunol. Elsevier BV. 2018;103:35–45.

    Article  CAS  PubMed  Google Scholar 

  115. Khedgikar V, Charles JF, Lehoczky JA. Mouse LGR6 regulates osteogenesis in vitro and in vivo through differential ligand use. Bone. Elsevier BV. 2022;155:116267.

    Article  CAS  PubMed  Google Scholar 

  116. Khedgikar V, Lehoczky JA. Evidence for Lgr6 as a novel marker of osteoblastic progenitors in mice. JBMR Plus. Wiley. 2019;3:e10075.

    Article  PubMed  Google Scholar 

  117. Funaki Y, Hasegawa Y, Okazaki R, Yamasaki A, Sueda Y, Yamamoto A, et al. Resolvin E1 inhibits osteoclastogenesis and bone resorption by suppressing IL-17-induced RANKL expression in osteoblasts and RANKL-induced osteoclast differentiation. Yonago Acta Med. Tottori University Faculty of Medicine. 2018;61:8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Habouri L, El Mansouri FE, Ouhaddi Y, Lussier B, Pelletier J-P, Martel-Pelletier J, et al. Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis. Osteoarthr Cartil. 2017;25:1719–28.

    Article  CAS  Google Scholar 

  119. Dravid AA, Dhanabalan KM, Naskar S, Vashistha A, Agarwal S, Padhan B, et al. Sustained release resolvin D1 liposomes are effective in the treatment of osteoarthritis in obese mice. J Biomed Mater Res A. 2023;111:765–77.

    Article  CAS  PubMed  Google Scholar 

  120. Valdes AM, Ravipati S, Menni C, Abhishek A, Metrustry S, Harris J, et al. Association of the resolvin precursor 17-HDHA, but not D- or E- series resolvins, with heat pain sensitivity and osteoarthritis pain in humans. Sci Rep. 2017;7:10748.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Barden AE, Moghaddami M, Mas E, Phillips M, Cleland LG, Mori TA. Specialised pro-resolving mediators of inflammation in inflammatory arthritis. Prostaglandins Leukot Essent Fatty Acids. 2016;107:24–9.

    Article  CAS  PubMed  Google Scholar 

  122. Turati M, Franchi S, Leone G, Piatti M, Zanchi N, Gandolla M, et al. Resolvin E1 and cytokines environment in skeletally immature and adult ACL tears. Front Med (Lausanne). Frontiers Media SA. 2021;8:610866.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS. Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc. Springer Science and Business Media LLC. 2008;16:442–8.

    Article  CAS  PubMed  Google Scholar 

  124. Seon JK, Song EK, Park SJ. Osteoarthritis after anterior cruciate ligament reconstruction using a patellar tendon autograft. Int Orthop. Springer Science and Business Media LLC. 2006;30:94–8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C. Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimum 10-year follow-up. Am J Sports Med. SAGE Publications. 2008;36:1275–82.

    Article  PubMed  Google Scholar 

  126. Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med. SAGE Publications. 2010;38:455–63.

    Article  PubMed  Google Scholar 

  127. Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. Elsevier BV. 2016;498:326–34.

    Article  CAS  PubMed  Google Scholar 

  128. Wu M-Y, Lin T-H, Chiu Y-C, Liou H-C, Yang R-S, Fu W-M. Involvement of 15-lipoxygenase in the inflammatory arthritis. J Cell Biochem. Wiley. 2012;113:2279–89.

    Article  CAS  PubMed  Google Scholar 

  129. Möller I, Rodas G, Villalón JM, Rodas JA, Angulo F, Martínez N, et al. Randomized, double-blind, placebo-controlled study to evaluate the effect of treatment with an SPMs-enriched oil on chronic pain and inflammation, functionality, and quality of life in patients with symptomatic knee osteoarthritis: GAUDI study. J Transl Med. 2023;21:423.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zaninelli TH, Fattori V, Verri WA Jr. Harnessing inflammation resolution in arthritis: current understanding of specialized pro-resolving lipid mediators’ contribution to arthritis physiopathology and future perspectives. Front Physiol. Frontiers Media SA. 2021;12:729134.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dakin SG, Colas RA, Wheway K, Watkins B, Appleton L, Rees J, et al. Proresolving mediators LXB4 and RvE1 regulate inflammation in stromal cells from patients with shoulder tendon tears. Am J Pathol. Elsevier BV. 2019;189:2258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dakin SG, Colas RA, Newton J, Gwilym S, Jones N, Reid HAB, et al. 15-Epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture. FASEB J. Wiley. 2019;33:8043–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lattermann.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, C.B.G., Merkely, G., Charles, J.F. et al. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 21, 758–770 (2023). https://doi.org/10.1007/s11914-023-00817-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00817-3

Keywords

Navigation