Skip to main content

Advertisement

Log in

Osteoimmunology in Periodontitis and Orthodontic Tooth Movement

  • CRANIOFACIAL SKELETON (TG CHU AND S AKINTOYE, SECTION EDITORS)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement.

Recent Findings

Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process.

Summary

Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lenartova M, Tesinska B, Janatova T, Hrebicek O, Mysak J, Janata J, Najmanova L. The oral microbiome in periodontal health. Front Cell Infect Microbiol. 2021;11:629723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolf TG, Cagetti MG, Fisher J-M, Seeberger GK, Campus G. Non-communicable diseases and oral health: an overview. Front Oral Health. 2021;2:725460–725460.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hajishengallis G, Lamont RJ, Graves DT. The enduring importance of animal models in understanding periodontal disease. Virulence. 2015;6:229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: their quasi-organismal nature and dialogue with the host. Periodontol. 2021;2000(86):210–30. This review discusses the concept of the ‘polymicrobial synergy and dysbiosis’ (PSD) model of periodontal disease pathogenesis and its effect on dysregulated host inflammatory response.

    Article  Google Scholar 

  5. Xiao W, Li S, Pacios S, Wang Y, Graves DT. Bone remodeling under pathological conditions. Front Oral Biol. 2016;18:17–27.

    Article  PubMed  Google Scholar 

  6. Hathaway-Schrader JD, Aartun JD, Poulides NA, Kuhn MB, McCormick BE, Chew ME, Huang E, Darveau RP, Westwater C, Novince CM. Commensal oral microbiota induces osteoimmunomodulatory effects separate from systemic microbiome in mice. JCI Insight. 2022;7:e140738.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022;13:812774. https://doi.org/10.3389/fimmu.2022.812774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol 2000. 2020;83:14–25.

    Article  PubMed  Google Scholar 

  9. Payne MA, Hashim A, Alsam A, Joseph S, Aduse-Opoku J, Wade WG, Curtis MA. Horizontal and vertical transfer of oral microbial dysbiosis and periodontal disease. J Dent Res. 2019;98:1503–10. This study establishes cause-and-effect evident relationships through the transfer of bacteria from mice with periodontitis to healthy mice, which leads to the establishment of a dysbiotic community and initiation of the diseased phenotype.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao E, Mattos M, Vieira GHA, Chen S, Corrêa JD, Wu Y, Albiero ML, Bittinger K, Graves DT (2017) Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22:120–128.e124. This is the first study to demonstrate that diabetes contributes to formation of a pathogenic oral microbiota as demonstrated by transfer of bacteria from diabetic mice to germ-free mice compared to the transfer from normoglycemic to germ-free mice.

  11. Şenel S. An overview of physical, microbiological and immune barriers of oral mucosa. Int J Mol Sci. 2021;22:7821.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zimmerman KA, Hopp K, Mrug M. Role of chemokines, innate and adaptive immunity. Cell Signal. 2020;73:109647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019;11:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000. 2020;83:26–39.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito H, Kifune T, Ishiyama M, Iwasa S, Takei H, Hasegawa T, Asano M, Shirakawa T. Effect of hypoxia on the expression of CCAAT/enhancer-binding protein β and receptor activator of nuclear factor kappa-B ligand in periodontal ligament cells. J Oral Sci. 2018;60:544–51.

    Article  CAS  PubMed  Google Scholar 

  16. Jurdziński KT, Potempa J, Grabiec AM. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clin Epigenetics. 2020;12:186.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis — periodontal bacteria and inflammation. Jpn Dent Sci Rev. 2021;57:201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Morais EF, Pinheiro JC, Leite RB, Santos PPA, Barboza CAG, Freitas RA. Matrix metalloproteinase-8 levels in periodontal disease patients: a systematic review. J Periodontal Res. 2018;53:156–63.

    Article  PubMed  Google Scholar 

  19. Neupane SP, Virtej A, Myhren LE, Bull VH. Biomarkers common for inflammatory periodontal disease and depression: a systematic review. Brain Behav Immun Health. 2022;21:100450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hajishengallis G, Hasturk H, Lambris JD; Contributing authors. C3-targeted therapy in periodontal disease: moving closer to the clinic. Trends Immunol 2021;42(10):856–864. https://doi.org/10.1016/j.it.2021.08.001. This clinical trial might represent a novel and transformative host-modulation therapy (C3-targeted intervention) warranting further investigation for the treatment of periodontitis.

  21. Silva LM, Doyle AD, Greenwell-Wild T, et al. (2021) Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374:eabl5450. This study identifies fibrin as a critical immune regulator of oral mucosal barrier homeostasis, mediated by the local engagement and activation of neutrophils.

  22. Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000. 2021;86:142–56.

    Article  PubMed  Google Scholar 

  23. Polak D, Zigron A, Eli-Berchoer L, Shapira L, Nussbaum G. Myd88 plays a major role in the keratinocyte response to infection with Porphyromonas gingivalis. J Periodontal Res. 2019;54:396–404.

    Article  CAS  PubMed  Google Scholar 

  24. Groeger S, Meyle J (2019) Oral Mucosal Epithelial Cells. Front Immunol 208

  25. Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight. 2020;5(20):e142067. https://doi.org/10.1172/jci.insight.142067.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mombelli A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol 2000. 2018;76:85–96.

    Article  PubMed  Google Scholar 

  27. Williams DW, Greenwell-Wild T, Brenchley L, et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell. 2021;184:4090-4104.e4015. This study is a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis utilizing single cell RNA-seq (scRNA-seq).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caetano AJ, Yianni V, Volponi A, Booth V, D'Agostino EM, Sharpe P Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. eLife 2021;10:e62810. This study establishes an RNA reference map of the human oral mucosa in health and disease.

  29. Hosokawa I, Hosokawa Y, Ozaki K, Yumoto H, Nakae H, Matsuo T. Proinflammatory effects of muramyldipeptide on human gingival fibroblasts. J Periodontal Res. 2010;45:193–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of periodontal/periapical lesion stability and progression. J Dent Res. 2020;100:29–36.

    Article  PubMed  Google Scholar 

  31. Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions between neutrophils and periodontal pathogens in late-onset periodontitis. Front Cell Infect Microbiol. 2021;11:627328–627328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong G, Song L, Tian C, Wang Y, Miao F, Zheng J, Lu C, Alsadun S, Graves DT. FOXO1 Regulates bacteria-induced neutrophil activity. Front Immunol. 2017;4(8):1088. https://doi.org/10.3389/fimmu.2017.01088.

    Article  CAS  Google Scholar 

  33. Ko KI, Syverson AL, Kralik RM, Choi J, DerGarabedian BP, Chen C, Graves DT. Diabetes-induced NF-κB dysregulation in skeletal stem cells prevents resolution of inflammation. Diabetes. 2019;68:2095–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling. Front Immunol. 2021;12:763334–763334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharawi H, Heyman O, Mizraji G, Horev Y, Laviv A, Shapira L, Yona S, Hovav AH, Wilensky A. The prevalence of gingival dendritic cell subsets in periodontal patients. J Dent Res. 2021;100:1330–6.

    Article  CAS  PubMed  Google Scholar 

  36. Song L, Dong G, Guo L, Graves DT. The function of dendritic cells in modulating the host response. Mol Oral Microbiol. 2018;33:13–21.

    Article  CAS  PubMed  Google Scholar 

  37. Hovav AH. Dendritic cells of the oral mucosa. Mucosal Immunol. 2014;7:27–37. This review demonstrates an overview of the phenotype and distribution of DCs in the oral mucosa is provided.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao W, Dong G, Pacios S, Alnammary M, Barger LA, Wang Y, Wu Y, Graves DT. FOXO1 deletion reduces dendritic cell function and enhances susceptibility to periodontitis. Am J Pathol. 2015;185:1085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong G, Wang Y, Xiao W, Pacios Pujado S, Xu F, Tian C, Xiao E, Choi Y, Graves DT. FOXO1 regulates dendritic cell activity through ICAM-1 and CCR7. J Immunol. 2015;194:3745–55.

    Article  CAS  PubMed  Google Scholar 

  40. Seidel A, Seidel CL, Weider M, Junker R, Gölz L, Schmetzer H. Influence of natural killer cells and natural killer T cells on periodontal disease: a systematic review of the current literature. Int J Mol Sci. 2020;21(24):9766. https://doi.org/10.3390/ijms21249766.PMID:33371393;PMCID:PMC7767411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilensky A, Chaushu S, Shapira L. The role of natural killer cells in periodontitis. Periodontol. 2015;2000(69):128–41. This study states the important role of (NK-T) in maintaining oral tissue homeostasis and initiating a destructive cascade through the production of pro-inflammatory mediators.

    Article  Google Scholar 

  42. Aoki-Nonaka Y, Nakajima T, Miyauchi S, Miyazawa H, Yamada H, Domon H, Tabeta K, Yamazaki K. Natural killer T cells mediate alveolar bone resorption and a systemic inflammatory response in response to oral infection of mice with Porphyromonas gingivalis. J Periodontal Res. 2014;49:69–76.

    Article  CAS  PubMed  Google Scholar 

  43. Krämer B, Kebschull M, Nowak M, Demmer RT, Haupt M, Körner C, Perner S, Jepsen S, Nattermann J, Papapanou PN. Role of the NK cell-activating receptor CRACC in periodontitis. Infect Immun. 2013;81:690–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quintino-de-Carvalho IL, Gonçalves-Pereira MH, Faria Ramos M, de Aguiar Milhim BHG, Da Costa ÚL, Santos ÉG, Nogueira ML, Da Costa SH. Type 1 innate lymphoid cell and natural killer cells are sources of interferon-γ and other inflammatory cytokines associated with distinct clinical presentation in early dengue infection. J Infect Dis. 2022;225:84–93.

    Article  CAS  PubMed  Google Scholar 

  45. Pearson C, Thornton EE, McKenzie B, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife. 2016;5:e10066.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bernink JH, Ohne Y, Teunissen MBM, et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat Immunol. 2019;20:992–1003.

    Article  CAS  PubMed  Google Scholar 

  47. Li C, Liu J, Pan J, Wang Y, Shen L, Xu Y. ILC1s and ILC3s exhibit inflammatory phenotype in periodontal ligament of periodontitis patients. Front Immunol. 2021;12:708678–708678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Balaji S, Cholan PK, Victor DJ. An emphasis of T-cell subsets as regulators of periodontal health and disease. J Clin Transl Res. 2021;7:648–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Figueredo CM, Lira-Junior R, Love RM. T and B cells in periodontal disease: new functions in a complex scenario. Int J Mol Sci. 2019;20(16):3949. https://doi.org/10.3390/ijms20163949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng W, Liu G, Luan Q, Yang C, Li S, Yu X, Su L. B-Cell deficiency exacerbates inflammation and bone loss in ligature-induced experimental periodontitis in mice. J Inflamm Res. 2021;14:5367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baker PJ, Boutaugh NR, Tiffany M, Roopenian DC. B Cell IgD deletion prevents alveolar bone loss following murine oral infection. Interdiscip Perspect Infect Dis. 2009;2009:864359. https://doi.org/10.1155/2009/864359. This study suggests that producing IgD B-cells are an important mediator of alveolar bone resorption, possibly through antigen-specific coactivation of B cells and CD4+ T cells.

  52. Bartold M, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol. 2019;46(Suppl 21):12–32.

    Article  PubMed  Google Scholar 

  53. Graves DT, Li J, Cochran DL. Inflammation and uncoupling as mechanisms of periodontal bone loss. J Dent Res. 2011;90:143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol. 2022;123:4–13.

    Article  CAS  PubMed  Google Scholar 

  55. Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40:706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19:626–42.

    Article  CAS  PubMed  Google Scholar 

  57. Pacios S, Xiao W, Mattos M, Lim J, Tarapore RS, Alsadun S, Yu B, Wang CY, Graves DT. Osteoblast lineage cells play an essential role in periodontal bone loss through activation of nuclear factor-kappa B. Sci Rep. 2015;5:16694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Graves DT, Alshabab A, Albiero ML, Mattos M, Corrêa JD, Chen S, Yang Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol. 2018;45:285–92. . This study demonstrates, for the first time, the imperative role of osteocytes in bacteria induced periodontal bone loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. López Roldán A, García Giménez JL, Alpiste Illueca F. Impact of periodontal treatment on the RANKL/OPG ratio in crevicular fluid. PLoS One. 2020;15:e0227757–e0227757.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y., A. Krez, E.M. Stein, Chapter 52 - Osteoporosis in organ transplant patients, in Marcus and Feldman’s Osteoporosis (Fifth Edition), D.W. Dempster, et al., Editors. 2021, Academic Press. 1281–1307.

  61. Rupp M, Merboth F, Daghma DE, Biehl C, El Khassawna T, Heiß C. Osteocytes. Z Orthop Unfall. 2019;157:154–63.

    Article  PubMed  Google Scholar 

  62. Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:615486–615486.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fukumoto S. Osteocytes and Wnt signaling. Clin Calcium. 2019;29:317–21.

    CAS  PubMed  Google Scholar 

  65. Cao W, Helder MN, Bravenboer N, Wu G, Jin J, Ten Bruggenkate CM, Klein-Nulend J, Schulten EAJM. Is there a governing role of osteocytes in bone tissue regeneration? Curr Osteoporos Rep. 2020;18:541–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zheng J, Chen S, Albiero ML, Vieira GHA, Wang J, Feng JQ, Graves DT. Diabetes activates periodontal ligament fibroblasts via NF-κB In Vivo. J Dent Res. 2018;97:580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lim J-C, Bae S-H, Lee G. Chun Jeih Ryu, Young-Joo Jang, Activation of β-catenin by TGF-β1 promotes ligament-fibroblastic differentiation and inhibits cementoblastic differentiation of human periodontal ligament cells. Stem Cells. 2020;38(12):1612–23. https://doi.org/10.1002/stem.3275.

    Article  CAS  Google Scholar 

  68. Takada K, Chiba T, Miyazaki T, Yagasaki L, Nakamichi R, Iwata T, Moriyama K, Harada H, Asahara H. Single cell RNA sequencing reveals critical functions of Mkx in periodontal ligament homeostasis. Front Cell Dev Biol. 2022;10:795441. https://doi.org/10.3389/fcell.2022.795441.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yamada S, Tsushima K, Kinoshita M, Sakashita H, Kajikawa T, Fujihara C, Yuan H, Suzuki S, Morisaki T, Murakami S. Mouse model of loeys-dietz syndrome shows elevated susceptibility to periodontitis via alterations in transforming growth factor-beta signaling. Front Physiol. 2021;12:715687–715687.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, Amling M, Wagner EF. The Fos-related antigen Fra-1 is an activator of bone matrix formation. Embo j. 2004;23:2789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taichman RS, Hauschka PV. Effects of interleukin-1 beta and tumor necrosis factor-alpha on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro. Inflammation. 1992;16:587–601.

    Article  CAS  PubMed  Google Scholar 

  72. American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–38. https://doi.org/10.2337/dc22-S002.

    Article  Google Scholar 

  73. Stöhr J, Barbaresko J, Neuenschwander M, Schlesinger S. Bidirectional association between periodontal disease and diabetes mellitus: a systematic review and meta-analysis of cohort studies. Sci Rep. 2021;11:13686.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Genco RJ, Borgnakke WS. Diabetes as a potential risk for periodontitis: association studies. Periodontol 2000. 2020;83:40–5. This review summarizes the established bidirectional association between periodontal disease and diabetes mellitus— both conditions affect each other.

    Article  PubMed  Google Scholar 

  75. Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020;82:214–24.

    Article  PubMed  Google Scholar 

  76. Barutta F, Bellini S, Durazzo M, Gruden G. Novel insight into the mechanisms of the bidirectional relationship between diabetes and periodontitis. Biomedicines. 2022;10:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kang J, de Brito BB, Pacios S, Andriankaja O, Li Y, Tsiagbe V, Schreiner H, Fine DH, Graves DT. Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis. Infect Immun. 2012;80:2247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Andriankaja OM, Galicia J, Dong G, Xiao W, Alawi F, Graves DT. Gene expression dynamics during diabetic periodontitis. J Dent Res. 2012;91:1160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Graves DT, Naguib G, Lu H, Leone C, Hsue H, Krall E. Inflammation is more persistent in type 1 diabetic mice. J Dent Res. 2005;84:324–8.

    Article  CAS  PubMed  Google Scholar 

  80. Liu R, Bal HS, Desta T, Krothapalli N, Alyassi M, Luan Q, Graves DT. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res. 2006;85:510–4.

    Article  CAS  PubMed  Google Scholar 

  81. Liu R, Bal HS, Desta T, Behl Y, Graves DT. Tumor necrosis factor-alpha mediates diabetes-enhanced apoptosis of matrix-producing cells and impairs diabetic healing. Am J Pathol. 2006;168:757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang Y, Zhou X, Cheng L, Li M. The impact of smoking on subgingival microflora: from periodontal health to disease. Front Microbiol. 2020;11:66–66.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Eke PI, Wei L, Thornton-Evans GO, Borrell LN, Borgnakke WS, Dye B, Genco RJ. Risk Indicators for Periodontitis in US Adults: NHANES 2009 to 2012. J Periodontol. 2016;87:1174–85.

    Article  PubMed  Google Scholar 

  84. White PC, Hirschfeld J, Milward MR, Cooper PR, Wright HJ, Matthews JB, Chapple ILC. Cigarette smoke modifies neutrophil chemotaxis, neutrophil extracellular trap formation and inflammatory response-related gene expression. J Periodontal Res. 2018;53:525–35.

    Article  CAS  PubMed  Google Scholar 

  85. Rosa GM, Lucas GQ, Lucas ON. Cigarette smoking and alveolar bone in young adults: a study using digitized radiographs. J Periodontol. 2008;79:232–44.

    Article  PubMed  Google Scholar 

  86. Zhang J, Yu J, Dou J, Hu P, Guo Q. The impact of smoking on subgingival plaque and the development of periodontitis: a literature review. Front Oral Health. 2021;2:751099–751099.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res. 2012;91:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weng W, Li H, Zhu S. An overlooked bone metabolic disorder: cigarette smoking-induced osteoporosis. Genes (Basel). 2022;13(5):806. https://doi.org/10.3390/genes13050806.

    Article  CAS  PubMed  Google Scholar 

  89. Qin Y, Liu Y, Jiang Y, Mei S, Liu Y, Feng J, Guo L, Du J, Graves DT, Liu Y. Cigarette smoke exposure inhibits osteoclast apoptosis via the mtROS pathway. J Dent Res. 2021;100:1378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Patel RA, Wilson RF, Patel PA, Palmer RM. The effect of smoking on bone healing: a systematic review. Bone Joint Res. 2013;2:102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006;129:469.e461-432.

    Article  Google Scholar 

  92. Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofacial Orthop. 2014;146:620–32.

    Article  PubMed  Google Scholar 

  93. Yang CY, Jeon HH, Alshabab A, Lee YJ, Chung CH, Graves DT. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. Int J Oral Sci. 2018;10:3.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Klein Y, Fleissig O, Polak D, Barenholz Y, Mandelboim O, Chaushu S. Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Sci Rep. 2020;10:8172. This study proposed the concept of "immunorthodontics" to describe the critical roles of immune cells in OTM for the first time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci. 2021;13:20.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci. 2010;1192:422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 1967;53:721–45.

    Article  CAS  PubMed  Google Scholar 

  98. Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune changes induced by orthodontic forces: a critical review. J Dent Res. 2022;101:11–20. This recent review summarizes the activity of different immune cells according to the clinical phases of OTM.

    Article  CAS  PubMed  Google Scholar 

  99. Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, Megat Abdul Wahab R, Zainal Ariffin Z. Cellular and molecular changes in orthodontic tooth movement. Sci World J. 2011;11:1788–803.

    Article  Google Scholar 

  100. Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009;88:597–608.

    Article  CAS  PubMed  Google Scholar 

  101. Marcaccini AM, Amato PA, Leao FV, Gerlach RF, Ferreira JT. Myeloperoxidase activity is increased in gingival crevicular fluid and whole saliva after fixed orthodontic appliance activation. Am J Orthod Dentofacial Orthop. 2010;138:613–6.

    Article  PubMed  Google Scholar 

  102. Pilon JJ, Kuijpers-Jagtman AM, Maltha JC. Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofacial Orthop. 1996;110:16–23.

    Article  CAS  PubMed  Google Scholar 

  103. Wald S, Leibowitz A, Aizenbud Y, et al. γδT cells are essential for orthodontic tooth movement. J Dent Res. 2021;100:731–8.

    Article  CAS  PubMed  Google Scholar 

  104. Alikhani M, Alyami B, Lee IS, et al. Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod Craniofac Res. 2015;18(Suppl 1):8–17.

    Article  PubMed  Google Scholar 

  105. Behm C, Zhao Z, Andrukhov O. Immunomodulatory activities of periodontal ligament stem cells in orthodontic forces-induced inflammatory processes: current views and future perspectives. Front Oral Health. 2022;3:877348.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.

    Article  CAS  PubMed  Google Scholar 

  107. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel). 2018;6:33.

    PubMed  Google Scholar 

  108. Zeng M, Kou X, Yang R, et al. Orthodontic force induces systemic inflammatory monocyte responses. J Dent Res. 2015;94:1295–302.

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Zhang H, Sun W, Wang S, Zhang S, Zhu L, Chen Y, Xie L, Sun Z, Yan B. Macrophages mediate corticotomy-accelerated orthodontic tooth movement. Sci Rep. 2018;8:16788.

    Article  PubMed  PubMed Central  Google Scholar 

  110. He D, Kou X, Yang R, et al. M1-like macrophage polarization promotes orthodontic tooth movement. J Dent Res. 2015;94:1286–94.

    Article  CAS  PubMed  Google Scholar 

  111. He D, Kou X, Luo Q, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res. 2015;94:129–39.

    Article  CAS  PubMed  Google Scholar 

  112. Kook SH, Jang YS, Lee JC. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells. J Cell Biochem. 2011;112:2891–901.

    Article  CAS  PubMed  Google Scholar 

  113. Yan Y, Liu F, Kou X, Liu D, Yang R, Wang X, Song Y, He D, Gan Y, Zhou Y. T Cells Are Required for Orthodontic Tooth Movement. J Dent Res. 2015;94:1463–70.

    Article  CAS  PubMed  Google Scholar 

  114. Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, Qian Y, Zhang M. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases. Front Immunol. 2021;12:664871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. He W, Zhang N, Lin Z. MicroRNA-125a-5p modulates macrophage polarization by targeting E26 transformation-specific variant 6 gene during orthodontic tooth movement. Arch Oral Biol. 2021;124:105060.

    Article  CAS  PubMed  Google Scholar 

  116. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, Weitzmann MN, Pacifici R. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117:122–32.

    Article  CAS  PubMed  Google Scholar 

  117. Ayon Haro ER, Ukai T, Yokoyama M, Kishimoto T, Yoshinaga Y, Hara Y. Locally administered interferon-γ accelerates lipopolysaccharide-induced osteoclastogenesis independent of immunohistological RANKL upregulation. J Periodontal Res. 2011;46:361–73.

    Article  CAS  PubMed  Google Scholar 

  118. Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408:600–5.

    Article  CAS  PubMed  Google Scholar 

  119. Bawyan RF, Baajajah AJ, Alzahrani HA, Murad MA, Jamalellail HMH, Muthaffar SY, Alandijani AA, Khayat MA, Bahurmoz AA, Azab AT, Almalki MA. Immunological and physiological responses related to orthodontic treatment. Int J Community Med Public Health. 2022;9:394–8.

    Article  Google Scholar 

  120. Della Chiesa M, Vitale M, Carlomagno S, Ferlazzo G, Moretta L, Moretta A. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur J Immunol. 2003;33:1657–66.

    Article  CAS  PubMed  Google Scholar 

  121. Vandevska-Radunovic V, Kvinnsland IH, Kvinnsland S, Jonsson R. Immunocompetent cells in rat periodontal ligament and their recruitment incident to experimental orthodontic tooth movement. Eur J Oral Sci. 1997;105:36–44.

    Article  CAS  PubMed  Google Scholar 

  122. Metcalfe DD, Pawankar R, Ackerman SJ, et al. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ J. 2016;9:7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Groeger M, Spanier G, Wolf M, Deschner J, Proff P, Schröder A, Kirschneck C. Effects of histamine on human periodontal ligament fibroblasts under simulated orthodontic pressure. PLoS One. 2020;15:e0237040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yamasaki K, Shibasaki Y, Fukuhara T. Behavior of mast cells in periodontal ligament associated with experimental tooth movement in rats. J Dent Res. 1982;61:1447–50.

    Article  CAS  PubMed  Google Scholar 

  125. Brito VGB, Patrocinio MS, Sousa MCL, Barreto AEA, Frasnelli SCT, Lara VS, Santos CF, Oliveira SHP. Mast cells contribute to alveolar bone loss in spontaneously hypertensive rats with periodontal disease regulating cytokines production. PLoS One. 2021;16:e0247372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lin D, Li L, Sun Y, Wang W, Wang X, Ye Y, Chen X, Xu Y. IL-17 regulates the expressions of RANKL and OPG in human periodontal ligament cells via TRAF6/TBK1-JNK/NF-κB pathways. Immunology. 2014;144:472–85.

    Article  PubMed  Google Scholar 

  127. Ohsaki Y, Takahashi S, Scarcez T, Demulder A, Nishihara T, Williams R, Roodman GD. Evidence for an autocrine/paracrine role for interleukin-6 in bone resorption by giant cells from giant cell tumors of bone. Endocrinology. 1992;131:2229–34.

    Article  CAS  PubMed  Google Scholar 

  128. Ogawa S, Kitaura H, Kishikawa A, et al. TNF-alpha is responsible for the contribution of stromal cells to osteoclast and odontoclast formation during orthodontic tooth movement. PLoS One. 2019;14:e0223989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hayashi N, Yamaguchi M, Nakajima R, Utsunomiya T, Yamamoto H, Kasai K. T-helper 17 cells mediate the osteo/odontoclastogenesis induced by excessive orthodontic forces. Oral Dis. 2012;18:375–88.

    Article  CAS  PubMed  Google Scholar 

  130. Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li J, Yu TT, Yan HC, Qiao YQ, Wang LC, Zhang T, Li Q, Zhou YH, Liu DW. T cells participate in bone remodeling during the rapid palatal expansion. Faseb j. 2020;34:15327–37.

    Article  CAS  PubMed  Google Scholar 

  132. Harrison DL, Fang Y, Huang J. T-cell mechanobiology: force sensation, potentiation, and translation. Front Phys 2019;7

  133. Settem RP, Honma K, Chinthamani S, Kawai T, Sharma A. B-Cell RANKL Contributes to pathogen-induced alveolar bone loss in an experimental periodontitis mouse model. Front Physiol. 2021;12:722859.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Harada Y, Han X, Yamashita K, Kawai T, Eastcott JW, Smith DJ, Taubman MA. Effect of adoptive transfer of antigen-specific B cells on periodontal bone resorption. J Periodontal Res. 2006;41:101–7.

    Article  CAS  PubMed  Google Scholar 

  135. Lee PY, Wang JX, Parisini E, Dascher CC, Nigrovic PA. Ly6 family proteins in neutrophil biology. J Leukoc Biol. 2013;94:585–94.

    Article  CAS  PubMed  Google Scholar 

  136. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190:1741–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115:e10-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lilja E, Bjornestedt T, Lindskog S. Cellular enzyme activity associated with tissue degradation following orthodontic tooth movement in man. Scand J Dent Res. 1983;91:381–90.

    CAS  PubMed  Google Scholar 

  139. Liu F, Wen F, He D, Liu D, Yang R, Wang X, Yan Y, Liu Y, Kou X, Zhou Y. Force-induced H2S by PDLSCs modifies osteoclastic activity during tooth movement. J Dent Res. 2017;96:694–702.

    Article  CAS  PubMed  Google Scholar 

  140. Grunheid T, Morbach BA, Zentner A. Pulpal cellular reactions to experimental tooth movement in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:434–41.

    Article  PubMed  Google Scholar 

  141. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115:355–62.

    Article  CAS  PubMed  Google Scholar 

  142. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. He D, Liu F, Cui S, Jiang N, Yu H, Zhou Y, Liu Y, Kou X. Mechanical load-induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1. Stem Cell Res Ther. 2020;11:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jiang N, He D, Ma Y, Su J, Wu X, Cui S, Li Z, Zhou Y, Yu H, Liu Y. Force-induced autophagy in periodontal ligament stem cells modulates M1 macrophage polarization via AKT signaling. Front Cell Dev Biol. 2021;9:666631.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Goh W, Huntington ND. Regulation of murine natural killer cell development. Front Immunol. 2017;8:130.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Matsuba S, Yabe-Wada T, Takeda K, Sato T, Suyama M, Takai T, Kikuchi T, Nukiwa T, Nakamura A. Identification of secretory leukoprotease inhibitor as an endogenous negative regulator in allergic effector cells. Front Immunol. 2017;8:1538.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12:117–29.

    Article  CAS  PubMed  Google Scholar 

  148. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article  CAS  PubMed  Google Scholar 

  149. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172:5149–53.

    Article  CAS  PubMed  Google Scholar 

  150. Fu S, Zhang N, Yopp AC, Chen D, Mao M, Chen D, Zhang H, Ding Y, Bromberg JS. TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am J Transplant. 2004;4:1614–27.

    Article  CAS  PubMed  Google Scholar 

  151. DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol. 2007;179:4685–93.

    Article  CAS  PubMed  Google Scholar 

  152. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004;172:5213–21.

    Article  CAS  PubMed  Google Scholar 

  153. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ge N, Peng J, Yu L, Huang S, Xu L, Su Y, Chen L. Orthodontic treatment induces Th17/Treg cells to regulate tooth movement in rats with periodontitis. Iran J Basic Med Sci. 2020;23:1315–22.

    PubMed  PubMed Central  Google Scholar 

  155. Guo L, Wei G, Zhu J, Liao W, Leonard WJ, Zhao K, Paul W. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc Natl Acad Sci U S A. 2009;106:13463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhu J, Jankovic D, Oler AJ, et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity. 2012;37:660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30:576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Choi Y, Woo KM, Ko SH, Lee YJ, Park SJ, Kim HM, Kwon BS. Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells. Eur J Immunol. 2001;31:2179–88.

    Article  CAS  PubMed  Google Scholar 

  159. Slifka MK, Whitton JL. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J Immunol. 2000;164:208–16.

    Article  CAS  PubMed  Google Scholar 

  160. Otero DC, Anzelon AN, Rickert RC. CD19 function in early and late B cell development: I. Maintenance of follicular and marginal zone B cells requires CD19-dependent survival signals. J Immunol. 2003;170:73–83.

    Article  CAS  PubMed  Google Scholar 

  161. Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: the biology and clinical implications. Kaohsiung J Med Sci. 2018;34:207–14.

    Article  PubMed  Google Scholar 

  162. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109:3839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhu W, Liang M. Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int. 2015;2015:972313.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Huang H, Yang R, Zhou YH. Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement. Stem Cells Int. 2018;2018:6531216.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhang L, Liu W, Zhao J, Ma X, Shen L, Zhang Y, Jin F, Jin Y. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway. Biochim Biophys Acta. 2016;1860:2211–9.

    Article  CAS  PubMed  Google Scholar 

  166. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  CAS  PubMed  Google Scholar 

  167. Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008;87:414–34.

    Article  CAS  PubMed  Google Scholar 

  168. Feng L, Yang R, Liu D, Wang X, Song Y, Cao H, He D, Gan Y, Kou X, Zhou Y. PDL Progenitor-mediated PDL recovery contributes to orthodontic relapse. J Dent Res. 2016;95:1049–56.

    Article  CAS  PubMed  Google Scholar 

  169. Liu AQ, Zhang LS, Chen J, et al. Mechanosensing by Gli1(+) cells contributes to the orthodontic force-induced bone remodelling. Cell Prolif. 2020;53:e12810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83.

    Article  CAS  PubMed  Google Scholar 

  171. Yang Y, Wang BK, Chang ML, Wan ZQ, Han GL. Cyclic stretch enhances osteogenic differentiation of human periodontal ligament cells via YAP activation. Biomed Res Int. 2018;2018:2174824.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Sun B, Wen Y, Wu X, Zhang Y, Qiao X, Xu X. Expression pattern of YAP and TAZ during orthodontic tooth movement in rats. J Mol Histol. 2018;49:123–31.

    Article  CAS  PubMed  Google Scholar 

  173. Jeon HH, Yang CY, Shin MK, Wang J, Patel JH, Chung CH, Graves DT. Osteoblast lineage cells and periodontal ligament fibroblasts regulate orthodontic tooth movement that is dependent on Nuclear Factor-kappa B (NF-kB) activation. Angle Orthod. 2021;91:664–71.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jin Y, Ding L, Ding Z, Fu Y, Song Y, Jing Y, Li Q, Zhang J, Ni Y, Hu Q. Tensile force-induced PDGF-BB/PDGFRbeta signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement. Sci Rep. 2020;10:11269.

    Article  PubMed  PubMed Central  Google Scholar 

  175. McCulloch CA. Origins and functions of cells essential for periodontal repair: the role of fibroblasts in tissue homeostasis. Oral Dis. 1995;1:271–8.

    Article  CAS  PubMed  Google Scholar 

  176. Basdra EK, Komposch G. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod. 1997;19:615–21.

    Article  CAS  PubMed  Google Scholar 

  177. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig. 2016;20:621–9.

    Article  CAS  PubMed  Google Scholar 

  178. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002;17:210–20.

    Article  CAS  PubMed  Google Scholar 

  179. Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res. 2006;85:457–62.

    Article  CAS  PubMed  Google Scholar 

  180. Teixeira CC, Khoo E, Tran J, Chartres I, Liu Y, Thant LM, Khabensky I, Gart LP, Cisneros G, Alikhani M. Cytokine expression and accelerated tooth movement. J Dent Res. 2010;89:1135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, Sasano Y, Mitani H. Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res. 2003;82:646–51.

    Article  CAS  PubMed  Google Scholar 

  182. Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, Embree MC, Songhee Song K, Marao HF, Mao JJ. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Front Oral Biol. 2016;18:1–8.

    Article  CAS  PubMed  Google Scholar 

  183. Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007;5:98–104.

    Article  PubMed  Google Scholar 

  185. Jiang C, Li Z, Quan H, et al. Osteoimmunology in orthodontic tooth movement. Oral Dis. 2015;21:694–704.

    Article  CAS  PubMed  Google Scholar 

  186. Uribe F, Kalajzic Z, Bibko J, Nanda R, Olson C, Rowe D, Wadhwa S. Early effects of orthodontic forces on osteoblast differentiation in a novel mouse organ culture model. Angle Orthod. 2011;81:284–91.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17:2068–79.

    Article  CAS  PubMed  Google Scholar 

  188. Shoji-Matsunaga A, Ono T, Hayashi M, Takayanagi H, Moriyama K, Nakashima T. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci Rep. 2017;7:8753.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Matsumoto T, Iimura T, Ogura K, Moriyama K, Yamaguchi A. The role of osteocytes in bone resorption during orthodontic tooth movement. J Dent Res. 2013;92:340–5.

    Article  CAS  PubMed  Google Scholar 

  190. Kurata K, Heino TJ, Higaki H, Vaananen HK. Bone marrow cell differentiation induced by mechanically damaged osteocytes in 3D gel-embedded culture. J Bone Miner Res. 2006;21:616–25.

    Article  PubMed  Google Scholar 

  191. Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res. 2008;23:915–27.

    Article  PubMed  Google Scholar 

  192. Moin S, Kalajzic Z, Utreja A, Nihara J, Wadhwa S, Uribe F, Nanda R. Osteocyte death during orthodontic tooth movement in mice. Angle Orthod. 2014;84:1086–92.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Odagaki N, Ishihara Y, Wang Z, Ei Hsu Hlaing E, Nakamura M, Hoshijima M, Hayano S, Kawanabe N, Kamioka H. Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J Dent Res. 2018;97:1374–82.

    Article  CAS  PubMed  Google Scholar 

  194. Morse A, McDonald MM, Kelly NH, Melville KM, Schindeler A, Kramer I, Kneissel M, van der Meulen MC, Little DG. Mechanical load increases in bone formation via a sclerostin-independent pathway. J Bone Miner Res. 2014;29:2456–67.

    Article  CAS  PubMed  Google Scholar 

  195. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Galea GL, Lanyon LE, Price JS. Sclerostin’s role in bone’s adaptive response to mechanical loading. Bone. 2017;96:38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jeon HH, Kang J, Li JM, Kim D, Yuan G, Almer N, Liu M, Yang S. The effect of IFT80 deficiency in osteocytes on orthodontic loading-induced and physiologic bone remodeling: in vivo study. Life (Basel). 2022;12:1147.

    CAS  PubMed  Google Scholar 

  199. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. 2007;104:13325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken). 2009;292:355–63.

    Article  CAS  PubMed  Google Scholar 

  201. Tang N, Zhao Z, Zhang L, Yu Q, Li J, Xu Z, Li X. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci. 2012;8:422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Apajalahti S, Sorsa T, Railavo S, Ingman T. The in vivo levels of matrix metalloproteinase-1 and -8 in gingival crevicular fluid during initial orthodontic tooth movement. J Dent Res. 2003;82:1018–22.

    Article  CAS  PubMed  Google Scholar 

  203. Holland R, Bain C, Utreja A. Osteoblast differentiation during orthodontic tooth movement. Orthod Craniofac Res. 2019;22:177–82.

    Article  PubMed  Google Scholar 

  204. Nagai M, Yoshida A, Sato N, Wong DT. Messenger RNA level and protein localization of transforming growth factor-beta1 in experimental tooth movement in rats. Eur J Oral Sci. 1999;107:475–81.

    Article  CAS  PubMed  Google Scholar 

  205. Yang CM, Chien CS, Yao CC, Hsiao LD, Huang YC, Wu CB. Mechanical strain induces collagenase-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells. J Biol Chem. 2004;279:22158–65.

    Article  CAS  PubMed  Google Scholar 

  206. Li Y, Tang L, Duan Y, Ding Y. Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells. BMC Res Notes. 2010;3:309.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Murshid SA. The role of osteocytes during experimental orthodontic tooth movement: a review. Arch Oral Biol. 2017;73:25–33.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Biomedical Research Award from the American Association of Orthodontists Foundation (HHJ) and a grant R01DE017732 and R01DE021921 from the NIDCR (DTG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana T. Graves.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Craniofacial Skeleton

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghamdi, B., Jeon, H.H., Ni, J. et al. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 21, 128–146 (2023). https://doi.org/10.1007/s11914-023-00774-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00774-x

Keywords

Navigation