Skip to main content

Advertisement

Log in

Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to investigate and compare the changes in human periodontal ligament fibroblasts (HPdLFs) and osteoblasts (HOBs) after the application of compressive force (CF) at two different strengths in vitro.

Materials and methods

HPdLF and HOB were exposed to CF with various strengths (5 and 10 %) using a Flexercell Compression Unit for 12 h in vitro. Viability was detected via 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) and apoptosis rate by transferase dUTP nick end labeling (TUNEL) assay. The gene expression of alkaline phosphatase (ALP), osteocalcin (OCN), osteoprotegerin (OPG), and receptor activator of NF-κB ligand (RANKL) was analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Osteopontin (OPN), matrix metalloproteinase-8 (MMP-8), and tissue inhibition of metalloproteinase-1 (TIMP-1) were quantified by an ELISA.

Results

Ten percent CF decreased viability, particularly in HOBs, but did not induce increased apoptosis. ALP gene expression increased the most after 5 % CF in HPdLFs and after 10 % CF in HOB. OCN was not affected by CF in either cell line. The highest RANKL/OPG ratio was measured after 5 % CF in both cell lines. OPN was upregulated in HOB by 5 %. HPdLFs showed an upregulation of MMP-8-synthesis and an increased MMP-8/TIMP-1 ratio.

Conclusions

HOBs have a greater effect on bone remodeling through the upregulation of OPN, whereas HPdLFs facilitate orthodontic tooth movement by influencing the extracellular matrix via the MMP-8/TIMP-1 ratio.

Clinical relevance

High CF in orthodontics should be avoided to prevent tissue damage, whereas moderate CF enables active tissue remodeling and tooth movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Proff P, Romer P (2009) The molecular mechanism behind bone remodelling: a review. Clin Oral Investig 13:355–362

    Article  PubMed  Google Scholar 

  2. Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240

    Article  PubMed  Google Scholar 

  3. Berkovitz BK (1982) The periodontal ligament in health and disease. Pergamon Press

  4. Goga Y, Chiba M, Shimizu Y, Mitani H (2006) Compressive force induces osteoblast apoptosis via caspase-8. J Dent Res 85:240–244

    Article  PubMed  Google Scholar 

  5. Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86:1212–1216

    Article  PubMed  Google Scholar 

  6. Lian JB, Stein GS (1995) Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J 15:118–140

    PubMed  PubMed Central  Google Scholar 

  7. Manzano-Moreno FJ, Rodriguez-Martinez JB, Ramos-Torrecillas J, Vallecillo-Capilla MF, Ruiz C, Garcia-Martinez O, Reyes-Botella C (2013) Proliferation and osteogenic differentiation of osteoblast-like cells obtained from two techniques for harvesting intraoral bone grafts. Clin Oral Investig 17:1349–1356

    Article  PubMed  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garlet TP, Coelho U, Repeke CE, Silva JS, Cunha Fde Q, Garlet GP (2008) Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. Cytokine 42:330–335

    Article  PubMed  Google Scholar 

  10. Kook SH, Jang YS, Lee JC (2011) Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-alpha-mediated activation of CD4+ T cells. J Cell Biochem 112:2891–2901

    Article  PubMed  Google Scholar 

  11. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lossdorfer S, Gotz W, Jager A (2011) PTH(1-34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 15:941–952

    Article  PubMed  Google Scholar 

  13. Reinholt FP, Hultenby K, Oldberg A, Heinegard D (1990) Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A 87:4473–4475

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sorsa T, Tjaderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, Golub LM, Brown DL, Mantyla P (2006) Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 38:306–321

    Article  PubMed  Google Scholar 

  15. Yang SY, Kim JW, Lee SY, Kang JH, Ulziisaikhan U, Yoo HI, Moon YH, Moon JS, Ko HM, Kim MS, Kim SH (2014) Upregulation of relaxin receptors in the PDL by biophysical force. Clin Oral Investig

  16. Gupta N, Gupta ND, Gupta A, Khan S, Bansal N (2014) Role of salivary matrix metalloproteinase-8 (MMP-8) in chronic periodontitis diagnosis. Front Med

  17. Allal-Elasmi M, Zayani Y, Zidi W, Zaroui A, Feki M, Mourali S, Mechmeche R, Kaabachi N (2014) The measurement of circulating matrix metalloproteinase-8 and its tissue inhibitor and their association with inflammatory mediators in patients with acute coronary syndrome. Clin Lab 60:951–956

    PubMed  Google Scholar 

  18. Apajalahti S, Sorsa T, Railavo S, Ingman T (2003) The in vivo levels of matrix metalloproteinase-1 and -8 in gingival crevicular fluid during initial orthodontic tooth movement. J Dent Res 82:1018–1022

    Article  PubMed  Google Scholar 

  19. Gaultier F, Foucault-Bertaud A, Lamy E, Ejeil AL, Dridi SM, Piccardi N, Piccirilli A, Msika P, Godeau G, Gogly B (2003) Effects of a vegetable extract from Lupinus albus (LU105) on the production of matrix metalloproteinases (MMP1, MMP2, MMP9) and tissue inhibitor of metalloproteinases (TIMP1, TIMP2) by human gingival fibroblasts in culture. Clin Oral Investig 7:198–205

    PubMed  Google Scholar 

  20. Lambert E, Dasse E, Haye B, Petitfrere E (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49:187–198

    Article  PubMed  Google Scholar 

  21. Jacobs C, Walter C, Ziebart T, Grimm S, Meila D, Krieger E, Wehrbein H (2013) Induction of IL-6 and MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig

  22. Li Y, Zheng W, Liu JS, Wang J, Yang P, Li ML, Zhao ZH (2011) Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression. J Dent Res 90:115–120

    Article  PubMed  Google Scholar 

  23. Jacobs C, Walter C, Ziebart T, Dirks I, Schramm S, Grimm S, Krieger E, Wehrbein H (2014) Mechanical loading influences the effects of bisphosphonates on human periodontal ligament fibroblasts. Clin Oral Investig

  24. Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K (2007) Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res 86:623–628

    Article  PubMed  Google Scholar 

  25. Romer P, Wolf M, Fanghanel J, Reicheneder C, Proff P (2014) Cellular response to orthodontically-induced short-term hypoxia in dental pulp cells. Cell Tissue Res 355:173–180

    Article  PubMed  Google Scholar 

  26. Tripuwabhrut P, Mustafa M, Gjerde CG, Brudvik P, Mustafa K (2013) Effect of compressive force on human osteoblast-like cells and bone remodelling: an in vitro study. Arch Oral Biol 58:826–836

    Article  PubMed  Google Scholar 

  27. Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14:839–849

    Article  PubMed  Google Scholar 

  28. Ozawa H, Imamura K, Abe E, Takahashi N, Hiraide T, Shibasaki Y, Fukuhara T, Suda T (1990) Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitro. J Cell Physiol 142:177–185

    Article  PubMed  Google Scholar 

  29. Han XL, Meng Y, Kang N, Lv T, Bai D (2008) Expression of osteocalcin during surgically assisted rapid orthodontic tooth movement in beagle dogs. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 66:2467–2475

    Article  Google Scholar 

  30. Yang YQ, Li XT, Rabie AB, Fu MK, Zhang D (2006) Human periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro. Front Biosci 11:776–781

    Article  PubMed  Google Scholar 

  31. Jacobs C, Grimm S, Ziebart T, Walter C, Wehrbein H (2013) Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Arch Oral Biol 58:896–904

    Article  PubMed  Google Scholar 

  32. Wei F, Wang C, Zhou G, Liu D, Zhang X, Zhao Y, Zhang Y, Yang Q (2008) The effect of centrifugal force on the mRNA and protein levels of ATF4 in cultured human periodontal ligament fibroblasts. Arch Oral Biol 53:35–43

    Article  PubMed  Google Scholar 

  33. Yamaguchi M, Aihara N, Kojima T, Kasai K (2006) RANKL increase in compressed periodontal ligament cells from root resorption. J Dent Res 85:751–756

    Article  PubMed  Google Scholar 

  34. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F (2009) Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthr Cartil 17:473–481

    Article  PubMed  Google Scholar 

  35. Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115:355–362

    Article  PubMed  Google Scholar 

  36. Taddei SR, Moura AP, Andrade Jr I, Garlet GP, Garlet TP, Teixeira MM, da Silva TA (2012) Experimental model of tooth movement in mice: a standardized protocol for studying bone remodeling under compression and tensile strains. J Biomech 45:2729–2735

    Article  PubMed  Google Scholar 

  37. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220

    Article  PubMed  Google Scholar 

  38. Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K (2006) Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofacial Res 9:63–70

    Article  Google Scholar 

  39. Fujihara S, Yokozeki M, Oba Y, Higashibata Y, Nomura S, Moriyama K (2006) Function and regulation of osteopontin in response to mechanical stress. J Bone Miner Res 21:956–964

    Article  PubMed  Google Scholar 

  40. Kaku M, Uoshima K, Yamashita Y, Miura H (2005) Investigation of periodontal ligament reaction upon excessive occlusal load—osteopontin induction among periodontal ligament cells. J Periodontal Res 40:59–66

    Article  PubMed  Google Scholar 

  41. Klein-Nulend J, Roelofsen J, Semeins CM, Bronckers AL, Burger EH (1997) Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures. J Cell Physiol 170:174–181

    Article  PubMed  Google Scholar 

  42. Wongkhantee S, Yongchaitrakul T, Pavasant P (2007) Mechanical stress induces osteopontin expression in human periodontal ligament cells through rho kinase. J Periodontol 78:1113–1119

    Article  PubMed  Google Scholar 

  43. Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, Sasano Y, Mitani H (2003) Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res 82:646–651

    Article  PubMed  Google Scholar 

  44. Ingman T, Apajalahti S, Mantyla P, Savolainen P, Sorsa T (2005) Matrix metalloproteinase-1 and -8 in gingival crevicular fluid during orthodontic tooth movement: a pilot study during 1 month of follow-up after fixed appliance activation. Eur J Orthod 27:202–207

    Article  PubMed  Google Scholar 

  45. El-Awady AR, Lapp CA, Gamal AY, Sharawy MM, Wenger KH, Cutler CW, Messer RL (2013) Human periodontal ligament fibroblast responses to compression in chronic periodontitis. J Clin Periodontol 40:661–671

    Article  PubMed  Google Scholar 

  46. Wenger KH, El-Awady AR, Messer RL, Sharawy MM, White G, Lapp CA (2011) Pneumatic pressure bioreactor for cyclic hydrostatic stress application: mechanobiology effects on periodontal ligament cells. J Appl Physiol (1985) 111:1072–1079

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Jutta Bühler, Ute Zerfass, and Lotte Groothusen for excellent technical assistance. Special thanks to Kathrine Taylor for the language help and proofreading.

Compliance with ethical standards

Funding

No funding has been received for this study.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jacobs.

Additional information

L. Nettelhoff and S. Grimm contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nettelhoff, L., Grimm, S., Jacobs, C. et al. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Invest 20, 621–629 (2016). https://doi.org/10.1007/s00784-015-1542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1542-0

Keywords

Navigation