Skip to main content

Advertisement

Log in

Diabetes and Bone Fragility: SGLT2 Inhibitor Use in the Context of Renal and Cardiovascular Benefits

  • Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Type 2 diabetes mellitus (T2DM) has been shown to negatively impact bone quality and increase fracture risk. While the pathophysiology of bone fragility in T2DM is not clear and likely multifactorial, medications used to treat T2DM are increasingly scrutinized for their potential role in aberrant bone metabolism. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are gaining popularity in patients with T2DM. In addition to lowering blood glucose, there is evidence that these drugs offer cardiac and renal benefit to individuals with T2DM, leading to FDA-approved indications for use in at-risk individuals. At the same time, there remain concerns that SGLT2 inhibitors, specifically canagliflozin, have adverse effects on bone metabolism and increase fracture risk in T2DM. This review seeks to further clarify the impact of these agents on the skeleton.

Recent Findings

SGLT2 inhibitors may indirectly disrupt calcium and phosphate homeostasis, contribute to weight loss, and cause hypotension, resulting in bone mineral density (BMD) losses and increased falls. The true long-term impact of SGLT2 inhibitors on the diabetic skeleton is still unclear; this review summarizes the results in studies investigating the impact of SGLT2 inhibitors on fracture risk in T2DM. Whereas studies performed with dapagliflozin and empagliflozin have not shown an increased risk of bone fractures compared with placebo, some studies have shown increased markers of bone turnover and reduced bone mineral density with canagliflozin treatment. While an increased fracture risk was observed with canagliflozin in the CANVAS trial (HR 1.26; 95% CI 1.04, 1.52), an increased risk was not seen in the CANVAS-R (HR 0.86) or CREDENCE (HR 0.98) trials.

Summary

There is substantial evidence of the cardiac and renal protective benefits of SGLT2 inhibitors. There does not appear to be an increased fracture risk with the use of dapagliflozin or empagliflozin. Given the possible association between canagliflozin and adverse bone outcomes described in CANVAS, canagliflozin use should be pursued in individuals with T2DM only after careful consideration of the individual’s skeletal risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Moayeri A, Mohamadpour M, Mousavi SF, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag. 2017;13:455–68.

    PubMed  PubMed Central  Google Scholar 

  2. Katsoulis M, Benetou V, Karapetyan T, Feskanich D, Grodstein F, Pettersson-Kymmer U, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017 Mar;281(3):300–10.

    CAS  PubMed  Google Scholar 

  3. National diabetes Statistics Report. PDF file. 2017. https://dev.diabetes.org/sites/default/files/2019-06/cdc-statistics-report-2017.pdf. Accessed 5 May 2020.

  4. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med. 2005;165:1612–7.

    PubMed  Google Scholar 

  5. de Liefde II, van der Klift M, de Laet CE, et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005;16:1713–20.

    PubMed  Google Scholar 

  6. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86:32–8.

    CAS  PubMed  Google Scholar 

  7. Janghorbani M, Feskanich D, Willett WC, Hu F. Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care. 2006;29:1573–8.

    PubMed  Google Scholar 

  8. Duan Y, Beck TJ, Wang XF, Seeman E. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res. 2003;18:1766–74.

    PubMed  Google Scholar 

  9. Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res. 2001;16:1108–19.

    CAS  PubMed  Google Scholar 

  10. Barrett-Connor E, Kritz-Silverstein D. Does hyperinsulinemia preserve bone? Diabetes Care. 1996;19:1388–92.

    CAS  PubMed  Google Scholar 

  11. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289:E735–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A, et al. Bone density in noninsulin-dependent diabetes mellitus. The Rotterdam Study. Ann Intern Med. 1995;122:409–14.

    PubMed  Google Scholar 

  13. Rakic V, Davis WA, Chubb SA, et al. Bone mineral density and its determinants in diabetes: the Fremantle Diabetes Study. Diabetologia. 2006;49:863–71.

    CAS  PubMed  Google Scholar 

  14. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305:2184–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Montagnani A, Gonnelli S, Alessandri M, Nuti R. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin Exp Res. 2011;23:84–90.

    PubMed  Google Scholar 

  16. Isidro ML, Ruano B. Bone disease in diabetes. Curr Diabetes Rev. 2010;6:144–55.

    PubMed  Google Scholar 

  17. Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Rep. 2007;5:105–11.

    PubMed  Google Scholar 

  18. Viegas M, Costa C, Lopes A, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complicat. 2011;25:216–21.

    PubMed  Google Scholar 

  19. Oikawa A, Siragusa M, Quaini F, Mangialardi G, Katare RG, Caporali A, et al. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30:498–508.

    CAS  PubMed  Google Scholar 

  20. Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, et al. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg. 2007;119:59–70.

    CAS  PubMed  Google Scholar 

  21. Tanko LB, Bagger YZ, Christiansen C. Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int. 2003;73:15–20.

    CAS  PubMed  Google Scholar 

  22. Vogt MT, Cauley JA, Kuller LH, Nevitt MC. Bone mineral density and blood flow to the lower extremities: the study of osteoporotic fractures. J Bone Miner Res. 1997;12:283–9.

    CAS  PubMed  Google Scholar 

  23. Schwartz AV, Vittinghoff E, Sellmeyer DE, Feingold KR, Rekeneire N, Strotmeyer ES, et al. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care. 2008;31:391–6.

    PubMed  Google Scholar 

  24. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92:2017–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Scragg R, Sowers M, Bell C, Third National Health and Nutrition Examination Survey. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care. 2004;27:2813–8.

    CAS  PubMed  Google Scholar 

  26. Golden SH, Lazo M, Carnethon M, Bertoni AG, Schreiner PJ, Diez Roux AV, et al. Examining a bidirectional association between depressive symptoms and diabetes. JAMA. 2008;299:2751–9.

    PubMed  PubMed Central  Google Scholar 

  27. Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care. 2008;31:2383–90.

    PubMed  PubMed Central  Google Scholar 

  28. Wang X, Shen X, Li X, Mauli Agrawal C. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    PubMed  Google Scholar 

  29. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, et al. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39:1073–9.

    CAS  PubMed  Google Scholar 

  30. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.

    CAS  PubMed  Google Scholar 

  31. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:2380–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–9.

    CAS  PubMed  Google Scholar 

  33. Jehle PM, Jehle DR, Mohan S, Bohm BO. Serum levels of insulin-like growth factor system components and relationship to bone metabolism in type 1 and type 2 diabetes mellitus patients. J Endocrinol. 1998;159:297–306.

    CAS  PubMed  Google Scholar 

  34. Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology. 1988;122:254–60.

    CAS  PubMed  Google Scholar 

  35. Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30:911–7.

    CAS  PubMed  Google Scholar 

  36. Dhindsa S, Bhatia V, Dhindsa G, Chaudhuri A, Gollapudi GM, Dandona P. The effects of hypogonadism on body composition and bone mineral density in type 2 diabetic patients. Diabetes Care. 2007;30:1860–1.

    PubMed  Google Scholar 

  37. Corona G, Monami M, Rastrelli G, et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl. 2010;34:528–40.

    PubMed  Google Scholar 

  38. Baynes KC, Boucher BJ, Feskens EJ, et al. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia. 1997;40:344–7.

    CAS  PubMed  Google Scholar 

  39. Perry HM, Horowitz M, Morley JE, et al. Longitudinal changes in serum 25-hydroxyvitamin D in older people. Metabolism. 1999;48:1028–32.

    CAS  PubMed  Google Scholar 

  40. Vestergaard P. Bone metabolism in type 2 diabetes and role of thiazolidinediones. Curr Opin Endocrinol Diabetes Obes. 2009;16:125–31.

    CAS  PubMed  Google Scholar 

  41. Gruntmanis U, Fordan S, Ghayee HK, Abdullah SM, See R, Ayers CR, et al. The peroxisome proliferatoractivated receptor-gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tissue Int. 2010;86:343–9.

    CAS  PubMed  Google Scholar 

  42. Richards JB, Papaioannou A, Adachi JD, Joseph L, Whitson HE, Prior JC, et al. Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med. 2007;167:188–94.

    CAS  PubMed  Google Scholar 

  43. Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008;168:820–5.

    CAS  PubMed  Google Scholar 

  44. Loke Y, Singh S, Furberg C. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180(1):32–9.

    PubMed  PubMed Central  Google Scholar 

  45. Zhu Z, Jiang Y, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115–23.

    CAS  PubMed  Google Scholar 

  46. Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein D, Goulis DG. Type 2 diabetes and osteoporosis: a guide to optimal management. J Clin Endocrinol Metab. 2017;102(10):3621–34.

    PubMed  Google Scholar 

  47. Kheniser KG, Polanco Santos CM, Kashyap SR. The effects of diabetes therapy on bone: a clinical perspective. J Diabetes Complicat. 2018;32(7):713–9.

    PubMed  Google Scholar 

  48. Zinman B, Wanner C, Lachin J, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    CAS  Google Scholar 

  49. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    CAS  Google Scholar 

  50. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. CREDENCE Trial Investigators. Canagliflozin and renal outcomes in diabetic nephropathy. N Engl J Med. 2019;380(24):2295–306.

    CAS  PubMed  Google Scholar 

  51. Wiviott SD, Raz I, Bonaca MP, et al. DECLARE-TIMI 58 investigators. dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    CAS  Google Scholar 

  52. Fioretto P, Stefansson BV, Johnsson E, Cain VA, Sjöström CD. Dapagliflozin reduces albuminuria over 2 years in patients with type 2 diabetes mellitus and renal impairment. Diabetologia. 2016;59:2036–9.

    PubMed  PubMed Central  Google Scholar 

  53. Li X, Li T, Cheng Y, Lu Y, Xue M, Xu L, et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated meta-analysis. Diabetes Metab Res Rev. 2019;35(7):e3170. https://doi.org/10.1002/dmrr.3170

  54. Tang HL, Li DD, Zhang JJ, Hsu YH, Want TS, Zhai SD, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016;18(12):1199–206.

    CAS  PubMed  Google Scholar 

  55. Ruanpeng D, Ungprasert P, Sangtian J, Harindhanavudhi T. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Metab Res Rev. 2017;33(6). https://doi.org/10.1002/dmrr.2903.

  56. ••Cheng L, Li YY, Hu W, Bai F, Hao HR, Yu WN, et al. Risk of bone fracture associated with sodium-glucose cotransporter-2 inhibitor treatment: A meta-analysis of randomized controlled trials. Diabetes Metab. 2019;45(5):436–45 This large meta-analysis of over 20,000 patients across 30 studies did not find evidence that individual SGLT2 inhibitors were associated with increased risk of bone fracture compared with placebo.

    CAS  PubMed  Google Scholar 

  57. Donnan J, Grandy C, Chibrikov E, et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open. 2019;9(1):e022577. https://doi.org/10.1136/bmjopen-2018-022577

  58. ••Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–66 Randomized phase 3 study of fracture risk with canagliflozin compared with placebo. Fracture risk was found to be increased with canagliflozin treatment, driven by the CANVAS data; the incidence of fractures was similar in canagliflozin and noncanagliflozin groups in the pooled non-CANVAS studies.

    CAS  PubMed  Google Scholar 

  59. Fralick M, Kim SC, Schneeweiss S, Kim D, Redelmeier DA, Patorno E. Fracture risk after initiation of use of Canagliflozin: a cohort study. Ann Intern Med. 2019;170(3):155–63.

    PubMed  PubMed Central  Google Scholar 

  60. Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101:44–51.

    CAS  PubMed  Google Scholar 

  61. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Thrailkill KM, Clay Bunn R, Nyman JS, Rettiganti MR, Cockrell GE, Wahl EC, et al. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. 2016;82:101–7.

    CAS  PubMed  Google Scholar 

  63. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962–71.

    CAS  PubMed  Google Scholar 

  64. Bolinder J, Ljunggren Ö, Johansson L, Wilding J, Langkilde AM, Sjöström CD, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014;16(2):159–69.

    CAS  PubMed  Google Scholar 

  65. Kohler S, Kaspers S, Salsali A, Zeller C, Woerle HJ. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride. Diabetes Care. 2018;41(8):1809–16.

    CAS  PubMed  Google Scholar 

  66. Yurista S, Sillje H, Goor H, et al. Effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on renal structure and function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019;21(7):862–73.

    CAS  PubMed  Google Scholar 

  67. Thrailkill KM, Nyman JS, Bunn RC, Uppuganti S, Thompson KL, Lumpkin CK Jr, et al. The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes. Bone. 2017;94:141–51.

    CAS  PubMed  Google Scholar 

  68. Ljunggren O, Bolinder J, Johansson L, Wilding J, Langkilde AM, Sjostrom CD, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012;14:990–9.

    CAS  PubMed  Google Scholar 

  69. Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk. Front Pharmacol. 2018;9:1517.

    CAS  PubMed  Google Scholar 

  70. Blau JE, Taylor SI. Adverse effects of SGLT2 inhibitors on bone. Nat Rev Nephrol. 2018;14(8):473–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015;3:8–10.

    CAS  PubMed  Google Scholar 

  72. Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol. 2012;8:276–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwon H. Canagliflozin: clinical efficacy and safety. Endocrinology and Metabolic Drugs Advisory Committee Meeting 2013. www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM336234.pdf. Accessed 5 May 2020

  74. Zibellini J, Seimon RV, Lee CM, Gibson AA, Hsu MS, Shapses SA, et al. Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J Bone Miner Res. 2015;30:2168–78.

    CAS  PubMed  Google Scholar 

  75. Sjöström CD, Johansson P, Ptaszynska A, List J, Johnsson E. Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes. Diabetes Vasc Dis Res. 2015;12(5):352–8.

    Google Scholar 

  76. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. EMPA-REG RENAL trial investigators. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(5):369–84.

    CAS  PubMed  Google Scholar 

  77. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S37–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall F. Moseley.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, K., Moseley, K.F. Diabetes and Bone Fragility: SGLT2 Inhibitor Use in the Context of Renal and Cardiovascular Benefits. Curr Osteoporos Rep 18, 439–448 (2020). https://doi.org/10.1007/s11914-020-00609-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00609-z

Keywords

Navigation