Skip to main content

Advertisement

Log in

Effects of PTH and PTH Hypersecretion on Bone: a Clinical Perspective

  • Epidemiology and Pathophysiology (G El-Hajj Fuleihan and D Shoback, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hyperparathyroidism may be due to an autonomous hypersecretion of parathyroid hormone (PTH) or occurs in response to a number of physiological stimuli. A number of recent findings have provided new insights into the importance of the calcium-parathyroid-vitamin D axis to bone in normal physiology and pathological conditions.

Recent Findings

PTH is known to affect bone microarchitecture with different effects on cortical and trabecular bone compartments. In trabecular bone, PTH may exert anabolic effects, whereas PTH promotes bone resorption in cortical bone. Vertebral fractures are prevalent in primary hyperparathyroidism (PHPT), and patients seem to fracture at higher values of bone mineral density (BMD) than patients with osteoporosis. This may be explained by changes in bone microarchitecture, which cannot be detected by measuring BMD. Even in mild PHPT, bone seems to benefit from parathyroidectomy. In secondary hyperparathyroidism, bone seems much more susceptible to fracture with insufficient levels of vitamin D compared with a replete vitamin status. If elevated PTH levels cannot be explained by conditions known to cause secondary hyperparathyroidism, the condition is termed normocalcemic PHPT, which also has been associated with an increased risk of fractures.

Summary

Hyperparathyroidism is harmful to bone, which is why it is of importance to normalize PTH levels either by parathyroidectomy in PHPT or by counteracting conditions known to increase PTH in secondary hyperparathyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brown EM, Pollak M, Seidman CE, Seidman JG, Chou Y-HW, Riccardi D, et al. Calcium-ion–sensing cell-surface receptors. N Engl J Med. 1995;333:234–40. https://doi.org/10.1056/NEJM199507273330407.

    Article  CAS  PubMed  Google Scholar 

  2. Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit. Rev. Clin. Lab. Sci. 2005:35–70. https://doi.org/10.1080/10408360590886606.

    Article  CAS  PubMed  Google Scholar 

  3. Bollerslev J, Pretorius M, Heck A. Parathyroid hormone independent hypercalcemia in adults. Best Pract Res Clin Endocrinol Metab. 2018;32:621–38. https://doi.org/10.1016/J.BEEM.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  4. Bollerslev J, Pretorius M, Heck A. Parathyroid hormone independent hypercalcemia in adults. Best Pract. Res. Clin. Endocrinol. Metab. 2018. p. 621–38.

    Article  CAS  Google Scholar 

  5. Laskowski LK, Goldfarb DS, Howland MA, Kavcsak K, Lugassy DM, Smith SW. A RANKL wrinkle: denosumab-induced hypocalcemia. J Med Toxicol. 2016;12:305–8. https://doi.org/10.1007/s13181-016-0543-y.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •• Cusano NE, Cipriani C, Bilezikian JP. Management of normocalcemic primary hyperparathyroidism. Best Pract Res Clin Endocrinol Metab. 2018;32:837–45. https://doi.org/10.1016/J.BEEM.2018.09.009. This paper reports on the diagnosis, clinical features, and management of normocalcemic primary hyperparathyroidism.

    Article  PubMed  Google Scholar 

  7. Xu F, Teitelbaum SL. Osteoclasts: new insights. Bone Res. 2013;1:11–26. https://doi.org/10.4248/BR201301003.

    Article  CAS  PubMed Central  Google Scholar 

  8. Osagie-Clouard L, Sanghani A, Coathup M, Briggs T, Bostrom M, Blunn G. Parathyroid hormone 1-34 and skeletal anabolic action. Bone Joint Res. 2017;6:14–21. https://doi.org/10.1302/2046-3758.61.BJR-2016-0085.R1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goltzman D. Physiology of parathyroid hormone. Endocrinol Metab Clin North Am . Elsevier Inc. 2018;47:743–58. https://doi.org/10.1016/j.ecl.2018.07.003.

    Article  Google Scholar 

  10. Fuleihan GE-H, Klerman EB, Brown EN, Choe Y, Brown EM, Czeisler CA. The parathyroid hormone circadian rhythm is truly endogenous—a general clinical research center study. J Clin Endocrinol Metab. 1997;82:281–6. https://doi.org/10.1210/jcem.82.1.3683.

    Article  CAS  Google Scholar 

  11. Rejnmark L, Lauridsen AL, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L. Diurnal rhythm of plasma 1,25-dihydroxyvitamin D and vitamin D-binding protein in postmenopausal women: relationship to plasma parathyroid hormone and calcium and phosphate metabolism. Eur J Endocrinol. 2002;146:635–42 https://eje.bioscientifica.com/view/journals/eje/146/5/635.xml.

    Article  CAS  PubMed  Google Scholar 

  12. Samuels MH, Veldhuis JD, Kramer P, Urban RJ, Bauer R, Mundy GR. Episodic secretion of parathyroid hormone in postmenopausal women: assessment by deconvolution analysis and approximate entropy. J Bone Miner Res. 1997;12:616–23. https://doi.org/10.1359/jbmr.1997.12.4.616.

    Article  CAS  PubMed  Google Scholar 

  13. Chiavistelli S, Giustina A, Mazziotti G. Parathyroid hormone pulsatility: physiological and clinical aspects. Bone Res. 2015;3:14049 https://www.ncbi.nlm.nih.gov/pubmed/26273533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mosekilde L. Primary hyperparathyroidism and the skeleton. Clin Endocrinol. 2008;69:1–19. https://doi.org/10.1111/j.1365-2265.2007.03162.x.

    Article  CAS  Google Scholar 

  15. Thakker RV. Genetics of parathyroid tumours. J Intern Med. 2016;280:574–83. https://doi.org/10.1111/joim.12523.

    Article  CAS  PubMed  Google Scholar 

  16. Cetani F, Picone A, Cerrai P, Vignali E, Borsari S, Pardi E, et al. Parathyroid expression of calcium-sensing receptor protein and in vivo parathyroid hormone-Ca2+ set-point in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2000;85:4789–94. https://doi.org/10.1210/jc.85.12.4789.

    Article  CAS  PubMed  Google Scholar 

  17. Guo CY, Thomas WEG, Al-Dehaimi AW, Assiri AMA, Eastell R. Longitudinal changes in bone mineral density and bone turnover in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81:3487–91. https://doi.org/10.1210/jc.81.10.3487.

    Article  CAS  PubMed  Google Scholar 

  18. Silverberg SJ, Shane E, de la Cruz L, Dempster DW, Feldman F, Seldin D, et al. Skeletal disease in primary hyperparathyroidism. J Bone Miner Res . 1989;4:283–291. https://doi.org/10.1002/jbmr.5650040302

    Article  Google Scholar 

  19. Eriksen EF, Mosekilde L, Melsen F. Trabecular bone remodeling and balance in primary hyperparathyroidism. Bone . 1986;7:213–221. https://doi.org/10.1016/8756-3282(86)90020-7.

    Article  CAS  PubMed  Google Scholar 

  20. Dempster DW, Müller R, Zhou H, Kohler T, Shane E, Parisien M, et al. Preserved three-dimensional cancellous bone structure in mild primary hyperparathyroidism. Bone . 2007;41:19–24. https://doi.org/10.1016/j.bone.2007.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dempster DW, Parisien M, Silverberg SJ, Liang XG, Schnitzer M, Shen V, et al. On the mechanism of cancellous bone preservation in postmenopausal women with mild primary hyperparathyroidism. J Clin Endocrinol Metab. 1999;84:1562–6. https://doi.org/10.1210/jcem.84.5.5652.

    Article  CAS  PubMed  Google Scholar 

  22. Vestergaard P, Mollerup CL, Frøkjær VG, Christiansen P, Blichert-Toft M, Mosekilde L. Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism. Br Med J. 2000;321:598–602. https://doi.org/10.1136/bmj.321.7261.598.

    Article  CAS  Google Scholar 

  23. De Geronimo S, Romagnoli E, Diacinti D, D’Erasmo E, Minisola S. The risk of fractures in postmenopausal women with primary hyperparathyroidism. Eur J Endocrinol. 2006;155:415–20. https://doi.org/10.1530/eje.1.02225.

    Article  CAS  PubMed  Google Scholar 

  24. Walker MD, Silverberg SJ. Primary hyperparathyroidism. Nat Rev Endocrinol . 2018;14:115–125. https://doi.org/10.1038/nrendo.2017.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. •• Ejlsmark-Svensson H, Bislev LS, Lajlev S, Harsløf T, Rolighed L, Sikjaer T, et al. Prevalence and risk of vertebral fractures in primary hyperparathyroidism: a nested case-control study. J Bone Miner Res. 2018;33:1657–64. https://doi.org/10.1002/jbmr.3461. This paper reports a higher BMD in PHPT patients with vertebral fractures compared to patients with osteoporosis and vertebral fractures suggesting that the biomechanical properties of bone in PHPT differs from osteoporosis.

    Article  PubMed  Google Scholar 

  26. Peacock M. Interpretation of bone mass determinations as they relate to fracture: implications for asymptomatic primary hyperparathyroidism. J Bone Miner Res. 2009;6:S77–82. https://doi.org/10.1002/jbmr.5650061417.

    Article  Google Scholar 

  27. Vignali E, Viccica G, Diacinti D, Cetani F, Cianferotti L, Ambrogini E, et al. Morphometric vertebral fractures in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab. 2009;94:2306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaji H, Yamauchi M, Chihara K, Sugimoto T. The threshold of bone mineral density for vertebral fractures in female patients with primary hyperparathyroidism. Eur J Endocrinol. 2005;153:373–8. https://doi.org/10.1530/eje.1.01985.

    Article  CAS  PubMed  Google Scholar 

  29. Stein EM, Silva BC, Boutroy S, Zhou B, Wang J, Udesky J, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2013;28:1029–40. https://doi.org/10.1002/jbmr.1841.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hansen S, Beck Jensen J-E, Rasmussen L, Hauge EM, Brixen K. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case-control study using HR-pQCT. J Bone Miner Res. 2010;25:1941–7. https://doi.org/10.1002/jbmr.98.

    Article  PubMed  Google Scholar 

  31. Hansen S, Hauge EM, Rasmussen L, Jensen J-EEB, Brixen K. Parathyroidectomy improves bone geometry and microarchitecture in female patients with primary hyperparathyroidism: a one-year prospective controlled study using high-resolution peripheral quantitative computed tomography. J Bone Miner Res. 2012;27:1150–8. https://doi.org/10.1002/jbmr.1540.

    Article  PubMed  Google Scholar 

  32. Eller-Vainicher C, Filopanti M, Palmieri S, Ulivieri FM, Morelli V, Zhukouskaya VV, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169:155–62. https://doi.org/10.1530/EJE-13-0305.

    Article  CAS  PubMed  Google Scholar 

  33. Liu M, Williams J, Kuo J, Lee JA, Silverberg SJ, Walker MD. Risk factors for vertebral fracture in primary hyperparathyroidism. Endocrine. 2019;66:682–90. https://doi.org/10.1007/s12020-019-02099-1.

    Article  CAS  PubMed  Google Scholar 

  34. Muñoz-Torres M, Manzanares Córdova R, García-Martín A, Avilés-Pérez MD, Nieto Serrano R, Andújar-Vera F, et al. Usefulness of trabecular bone score (TBS) to identify bone fragility in patients with primary hyperparathyroidism. J Clin Densitom. 2019;22:162–70. https://doi.org/10.1016/j.jocd.2018.06.005.

    Article  PubMed  Google Scholar 

  35. Leere JS, Kruse C, Robaczyk M, Karmisholt J, Vestergaard P. Associations between trabecular bone score and biochemistry in surgically vs conservatively treated outpatients with primary hyperparathyroidism: a retrospective cohort study. Bone Reports. 2018;9:101–9 https://www.sciencedirect.com/science/article/pii/S2352187218300470?via%3Dihub.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grigorie D, Coles D, Sucaliuc A. Trabecular bone score (TBS) has a poor discriminative power for vertebral fractures in 153 Romanian patients with primary hyperparathyroidism. Acta Endocrinol. 2018;14:208–12. https://doi.org/10.4183/aeb.2018.208.

    Article  CAS  Google Scholar 

  37. Melton LJ, Atkinson EJ, O’fallon WM, Heath H. Risk of age-related fractures in patients with primary hyperparathyroidism. Arch Intern Med . 1992;152:2269–2273. https://doi.org/10.1001/archinte.1992.00400230081014.

    Article  PubMed  Google Scholar 

  38. Kenny AM, MacGillivray DC, Pilbeam CC, Crombie HD, Raisz LG. Fracture incidence in postmenopausal women with primary hyperparathyroidism. Surgery . 1995;118:109–114. https://doi.org/10.1016/S0039-6060(05)80017-0.

    Article  CAS  PubMed  Google Scholar 

  39. Larsson K, Lindh E, Lind L, Persson I, Ljunghall S. Increased fracture risk in hypercalcemia: bone mineral content measured in hyperparathyroidism. Acta Orthop . 1989;60:268–270. https://doi.org/10.3109/17453678909149275.

    Article  CAS  PubMed  Google Scholar 

  40. Khosla S, Melton LJ, Wermers RA, Crowson CS, O’Fallon WM, Riggs BL. Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res . 1999;14:1700–1707. https://doi.org/10.1359/jbmr.1999.14.10.1700.

    Article  CAS  PubMed  Google Scholar 

  41. Kochersberger G, Buckley NJ, Leight GS, Martinez S, Studenski S, Vogler J, et al. What is the clinical significance of bone loss in primary hyperparathyroidism? Arch Intern Med. 1987;147:1951–3. https://doi.org/10.1001/archinte.1987.00370110079012.

    Article  CAS  PubMed  Google Scholar 

  42. Cipriani C, Biamonte F, Costa AG, Zhang C, Biondi P, Diacinti D, et al. Prevalence of kidney stones and vertebral fractures in primary hyperparathyroidism using imaging technology. J Clin Endocrinol Metab . 2015;100:1309–1315. https://doi.org/10.1210/jc.2014-3708.

    Article  CAS  Google Scholar 

  43. Rolighed L, Vestergaard P, Heickendorff L, Sikjaer T, Rejnmark L, Mosekilde L, et al. BMD improvements after operation for primary hyperparathyroidism. Langenbeck’s Arch Surg. 2013;398:113–20. https://doi.org/10.1007/s00423-012-1026-5.

    Article  Google Scholar 

  44. •• Zhang L, Liu X, Li H. Long-Term skeletal outcomes of primary hyperparathyroidism patients after treatment with parathyroidectomy: a systematic review and meta-analysis. Horm Metab Res. 2018;50:242–9. https://doi.org/10.1055/s-0043-125334. A systematic review and meta-analysis reporting on skeletal effects of parathyroidectomy in PHPT.

    Article  CAS  PubMed  Google Scholar 

  45. Lundstam K, Heck A, Godang K, Mollerup C, Baranowski M, Pernow Y, et al. Effect of surgery versus observation: skeletal 5-year outcomes in a randomized trial of patients with primary HPT (the SIPH study). J Bone Miner Res. 2017;32:1907–14. https://doi.org/10.1002/jbmr.3177.

    Article  PubMed  Google Scholar 

  46. •• Lundstam K, Heck A, Mollerup C, Godang K, Baranowski M, Pernow Y, et al. Effects of parathyroidectomy versus observation on the development of vertebral fractures in mild primary hyperparathyroidism. J Clin Endocrinol Metab. 2015;100:1359–67. Results from the so far largest RCT on mild PHPT reporting beneficial skeletal effects of surgery compared with medical observation.

    Article  CAS  PubMed  Google Scholar 

  47. Šiprová H, Fryšák Z, Souček M. Primary hyperparathyroidism, with a focus on management of the normocalcemic form: to treat or not to treat? Endocr Pract. 2016;22:294–301. https://doi.org/10.4158/EP15704.OR.

    Article  PubMed  Google Scholar 

  48. García-Martín A, Reyes-García R, Muñoz-Torres M. Normocalcemic primary hyperparathyroidism: one-year follow-up in one hundred postmenopausal women. Endocrine. 2012;42:764–6. https://doi.org/10.1007/s12020-012-9694-z.

    Article  CAS  PubMed  Google Scholar 

  49. Lowe H, McMahon DJ, Rubin MR, Bilezikian JP, Silverberg SJ. Normocalcemic primary hyperparathyroidism: further characterization of a new clinical phenotype. J Clin Endocrinol Metab. 2007;92:3001–5. https://doi.org/10.1210/jc.2006-2802.

    Article  CAS  PubMed  Google Scholar 

  50. Rubin MR, Bilezikian JP, McMahon DJ, Jacobs T, Shane E, Siris E, et al. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J Clin Endocrinol Metab. 2008;93:3462–70. https://doi.org/10.1210/jc.2007-1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van der Plas WY, Noltes ME, van Ginhoven TM, Kruijff S. Secondary and tertiary hyperparathyroidism: a narrative review. Scand J Surg . 2019;[Epub ahead of print]. https://doi.org/10.1177/1457496919866015

  52. Cipriani C, Bilezikian JP. Three generational phenotypes of sporadic primary hyperparathyroidism: evolution defined by technology. Lancet Diabetes Endocrinol . 2019;7:745–747. https://doi.org/10.1016/S2213-8587(19)30188-3.

    Article  Google Scholar 

  53. Rejnmark L, Amstrup AK, Mollerup CL, Heickendorff L, Mosekilde L. Further insights into the pathogenesis of primary hyperparathyroidism: a nested case-control study. J Clin Endocrinol Metab. 2013;98:87–96. https://doi.org/10.1210/jc.2012-2499.

    Article  CAS  PubMed  Google Scholar 

  54. Lee JY, Shoback DM. Familial hypocalciuric hypercalcemia and related disorders. Best Pract Res Clin Endocrinol Metab. 2018;32:609–19. https://doi.org/10.1016/j.beem.2018.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med. 2013;368:2476–86. https://doi.org/10.1056/NEJMoa1300253.

    Article  CAS  PubMed  Google Scholar 

  56. •• Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2019;15:33–51. https://doi.org/10.1038/s41574-018-0115-0. A very comprehensive review reporting the importance of CaSR.

    Article  CAS  Google Scholar 

  57. Christensen SE, Nissen PH, Vestergaard P, Mosekilde L. Familial hypocalciuric hypercalcaemia: a review. Curr Opin Endocrinol Diabetes Obes. 2011;18:359–70. https://doi.org/10.1097/MED.0b013e32834c3c7c.

    Article  CAS  PubMed  Google Scholar 

  58. Vargas-Poussou R, Mansour-Hendili L, Baron S, Bertocchio J-P, Travers C, Simian C, et al. Familial hypocalciuric hypercalcemia types 1 and 3 and primary hyperparathyroidism: similarities and differences. J Clin Endocrinol Metab. 2016;101:2185–95. https://doi.org/10.1210/jc.2015-3442.

    Article  CAS  PubMed  Google Scholar 

  59. Christensen SE, Nissen PH, Vestergaard P, Heickendorff L, Rejnmark L, Brixen K, et al. Skeletal consequences of familial hypocalciuric hypercalcaemia vs. primary hyperparathyroidism. Clin Endocrinol. 2009;71:798–807. https://doi.org/10.1111/j.1365-2265.2009.03557.x.

    Article  Google Scholar 

  60. Law WM, Wahner HW, Heath H. Bone mineral density and skeletal fractures in familial benign hypercalcemia (hypocalciuric hypercalcemia). Mayo Clin Proc. 1984;59:811–5 https://www.sciencedirect.com/science/article/abs/pii/S0025619612656146?via%3Dihub.

    Article  PubMed  Google Scholar 

  61. Jakobsen NFB, Rolighed L, Moser E, Nissen PH, Mosekilde L, Rejnmark L. Increased trabecular volumetric bone mass density in familial hypocalciuric hypercalcemia (FHH) type 1: a cross-sectional study. Calcif Tissue Int. 2014;95:141–52. https://doi.org/10.1007/s00223-014-9877-0.

    Article  CAS  PubMed  Google Scholar 

  62. Isaksen T, Nielsen CS, Christensen SE, Nissen PH, Heickendorff L, Mosekilde L. Forearm bone mineral density in familial hypocalciuric hypercalcemia and primary hyperparathyroidism: a comparative study. Calcif Tissue Int. 2011;89:285–94. https://doi.org/10.1007/s00223-011-9517-x.

    Article  CAS  PubMed  Google Scholar 

  63. • Vargas-Poussou R, Mansour-Hendili L, Baron S, Bertocchio JP, Travers C, Simian C, et al. Familial hypocalciuric hypercalcemia types 1 and 3 and primary hyperparathyroidism: similarities and differences. J Clin Endocrinol Metab. 2016;101:2185–95. https://doi.org/10.1210/jc.2015-3442. This study provides evidence for differences between FHH type 1 and 3.

    Article  CAS  Google Scholar 

  64. Jørgensen HS, Winther S, Bøttcher M, Hauge EM, Rejnmark L, Svensson M, et al. Bone turnover markers are associated with bone density, but not with fracture in end stage kidney disease: a cross-sectional study. BMC Nephrol. 2017;18:1–10. https://doi.org/10.1186/s12882-017-0692-5.

    Article  CAS  Google Scholar 

  65. Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, et al. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res. 2013;28:1811–20. https://doi.org/10.1002/jbmr.1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geng S, Kuang Z, Peissig PL, Page D, Maursetter L, Hansen KE. Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos Int. 2019;30:2019–25. https://doi.org/10.1007/s00198-019-05033-3.

    Article  CAS  PubMed  Google Scholar 

  67. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int . 2005;68:1793–1800. https://doi.org/10.1111/j.1523-1755.2005.00596.x.

    Article  CAS  PubMed  Google Scholar 

  68. Moe SM, Abdalla S, Chertow GM, Parfrey PS, Block GA, Correa-Rotter R, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol. 2015;26:1466–75. https://doi.org/10.1681/ASN.2014040414.

    Article  CAS  PubMed  Google Scholar 

  69. Goltzman D. Do calcimimetics directly alter bone remodeling? Am J Physiol Physiol. 2010;298:F1313–4. https://doi.org/10.1152/ajprenal.00147.2010.

    Article  CAS  Google Scholar 

  70. Massy Z, Drueke T. Adynamic bone disease is a predominant bone pattern in early stages of chronic kidney disease. J Nephrol. 2017;30:629–34. https://doi.org/10.1007/s40620-017-0397-7.

    Article  PubMed  Google Scholar 

  71. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Executive summary of the 2017 KDIGO chronic kidney disease–mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92:26–36. https://doi.org/10.1016/j.kint.2017.04.006.

    Article  PubMed  Google Scholar 

  72. El-Desouki MI, Othman SM, Fouda MA. Bone mineral density and bone scintigraphy in adult Saudi female patients with osteomalacia. Saudi Med J. 2004;25:355–8.

    PubMed  Google Scholar 

  73. Parfitt AM, Rao DS, Stanciu J, Villanueva AR, Kleerekoper M, Frame B. Irreversible bone loss in osteomalacia. Comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment. J Clin Invest. 1985;76:2403–12. https://doi.org/10.1172/JCI112253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Ali H, Fuleihan GEH. Nutritional osteomalacia: substantial clinical improvement and gain in bone density posttherapy. J Clin Densitom. 2000.

  75. Avenell A, Mak JCS, O’connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. John Wiley and Sons Ltd: Cochrane Database Syst. Rev; 2014. https://doi.org/10.1002/14651858.CD000227.pub4.

    Book  Google Scholar 

  76. Reid IR, Horne AM, Mihov B, Gamble GD, Al-Abuwsi F, Singh M, et al. Effect of monthly high-dose vitamin D on bone density in community-dwelling older adults substudy of a randomized controlled trial. J Intern Med. 2017;282:452–60. https://doi.org/10.1111/joim.12651.

    Article  CAS  PubMed  Google Scholar 

  77. Macdonald HM, Reid IR, Gamble GD, Fraser WD, Tang JC, Wood AD. 25-Hydroxyvitamin D threshold for the effects of vitamin D supplements on bone density: secondary analysis of a randomized controlled trial. J Bone Miner Res. 2018;33:1464–9. https://doi.org/10.1002/jbmr.3442.

    Article  CAS  PubMed  Google Scholar 

  78. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22:477–501. https://doi.org/10.1210/edrv.22.4.0437.

    Article  CAS  PubMed  Google Scholar 

  79. Björkman M, Sorva A, Tilvis R. Responses of parathyroid hormone to vitamin D supplementation: a systematic review of clinical trials. Arch Gerontol Geriatr. 2009;48:160–6. https://doi.org/10.1016/j.archger.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  80. Shibli-Rahhal A, Paturi B. Variations in parathyroid hormone concentration in patients with low 25 hydroxyvitamin D. Osteoporos Int. 2014;25:1931–6. https://doi.org/10.1007/s00198-014-2687-4.

    Article  CAS  PubMed  Google Scholar 

  81. Okazaki R, Sugimoto T, Kaji H, Fujii Y, Shiraki M, Inoue D, et al. Vitamin D insufficiency defined by serum 25-hydroxyvitamin D and parathyroid hormone before and after oral vitamin D3 load in Japanese subjects. J Bone Miner Metab. 2011;29:103–10. https://doi.org/10.1007/s00774-010-0200-5.

    Article  CAS  PubMed  Google Scholar 

  82. Bacon CJ, Woo J, Lau EMCC, Lam CWKK, Gamble GD, Reid IR. Effects of 25-hydroxyvitamin D level and its change on parathyroid hormone in premenopausal Chinese women. Osteoporos Int. 2010;21:1935–41. https://doi.org/10.1007/s00198-009-1163-z.

    Article  CAS  PubMed  Google Scholar 

  83. Ardawi MSM, Sibiany AM, Bakhsh TM, Qari MH, Maimani AA. High prevalence of vitamin D deficiency among healthy Saudi Arabian men: relationship to bone mineral density, parathyroid hormone, bone turnover markers, and lifestyle factors. Osteoporos Int. 2012;23:675–86. https://doi.org/10.1007/s00198-011-1606-1.

    Article  CAS  PubMed  Google Scholar 

  84. Arabi A, Baddoura R, El-Rassi R, El-Hajj FG. PTH level but not 25 (OH) vitamin D level predicts bone loss rates in the elderly. Osteoporos Int. 2012;23:971–80. https://doi.org/10.1007/s00198-011-1659-1.

    Article  CAS  PubMed  Google Scholar 

  85. Rejnmark L, Vestergaard P, Brot C, Mosekilde L. Parathyroid response to vitamin D insufficiency: relations to bone, body composition and to lifestyle characteristics. Clin Endocrinol. 2008;69:29–35. https://doi.org/10.1111/j.1365-2265.2008.03186.x.

    Article  CAS  Google Scholar 

  86. Sahota O, Mundey M, San P, Godber I, Lawson N, Hosking D. The relationship between vitamin D and parathyroid hormone: calcium homeostasis, bone turnover, and bone mineral density in postmenopausal women with established osteoporosis. Bone. 2004;35:312–9 https://www.sciencedirect.com/science/article/pii/S8756328204000675?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  87. Aloia J, Bojadzievski T, Yusupov E, Shahzad G, Pollack S, Mikhail M, et al. The relative influence of calcium intake and vitamin D status on serum parathyroid hormone and bone turnover biomarkers in a double-blind, placebo-controlled parallel group, longitudinal factorial design. J Clin Endocrinol Metab. 2010;95:3216–24. https://doi.org/10.1210/jc.2009-1294.

    Article  CAS  PubMed  Google Scholar 

  88. Aloia JF, Feuerman M, Yeh JK. Reference range for serum parathyroid hormone. Endocr Pract . Endocrine Practice. 2006;12:137–44. https://doi.org/10.4158/EP.12.2.137.

    Article  PubMed  Google Scholar 

  89. Amstrup AK, Rejnmark L, Vestergaard P, Heickendorff L, Mosekilde L. Effects of smoking on severity of disease in primary hyperparathyroidism. Calcif Tissue Int. 2010;87:406–13. https://doi.org/10.1007/s00223-010-9416-6.

    Article  CAS  PubMed  Google Scholar 

  90. Paik JM, Farwell WR, Taylor EN. Demographic, dietary, and serum factors and parathyroid hormone in the National Health and Nutrition Examination Survey . Osteoporos. Int. Springer London; 2012. p. 1727–1736. https://doi.org/10.1007/s00198-011-1776-x, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khaw KT, Sneyd MJ, Compston J. Bone density parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. Br Med J. 1992. https://doi.org/10.1136/bmj.305.6848.273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Collins D, Jasani C, Fogelman I, Swaminathan R. Vitamin D and bone mineral density. Osteoporos Int. 1998;8:110–4. https://doi.org/10.1007/BF02672505.

    Article  CAS  PubMed  Google Scholar 

  93. Gao C, Qiao J, Li SS, Yu WJ, He JW, Fu WZ, et al. The levels of bone turnover markers 25(OH) D and PTH and their relationship with bone mineral density in postmenopausal women in a suburban district in China. Osteoporos Int. 2017;28:211–8. https://doi.org/10.1007/s00198-016-3692-6.

    Article  CAS  PubMed  Google Scholar 

  94. Kim SKSH, Kim TH, Kim SKSH. Effect of high parathyroid hormone level on bone mineral density in a vitamin D-sufficient population: Korea national health and nutrition examination survey 2008-2010. Endocr J. 2014;61:1197–204. https://doi.org/10.1507/endocrj.EJ14-0287.

    Article  CAS  PubMed  Google Scholar 

  95. Berger C, Almohareb O, Langsetmo L, Hanley DA, Kovacs CS, Josse RG, et al. Characteristics of hyperparathyroid states in the Canadian multicentre osteoporosis study (CaMos) and relationship to skeletal markers. Clin Endocrinol. 2015;82:359–68. https://doi.org/10.1111/cen.12569.

    Article  CAS  Google Scholar 

  96. Sayed-Hassan R, Abazid N, Koudsi A, Alourfi Z. Vitamin D status and parathyroid hormone levels in relation to bone mineral density in apparently healthy Syrian adults. Arch Osteoporos. 2016;11:18. https://doi.org/10.1007/s11657-015-0245-0.

    Article  PubMed  Google Scholar 

  97. Rødbro LL, Bislev LS, Sikjær T, Rejnmark L. Bone metabolism, density, and geometry in postmenopausal women with vitamin D insufficiency: a cross-sectional comparison of the effects of elevated parathyroid levels. Osteoporos Int. 2018;29:2211–8. https://doi.org/10.1007/s00198-018-4602-x.

    Article  CAS  PubMed  Google Scholar 

  98. Fujiyoshi A, Polgreen LE, Hurley DL, Gross MD, Sidney S, Jacobs DR. A cross-sectional association between bone mineral density and parathyroid hormone and other biomarkers in community-dwelling young adults: the CARDIA study. J Clin Endocrinol Metab. 2013;98:4038–46. https://doi.org/10.1210/jc.2013-2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. •• Arabi A, Baddoura R, Awada H, Salamoun M, Ayoub G, El-Hajj Fuleihan G. Hypovitaminosis D osteopathy: Is it mediated through PTH, lean mass, or is it a direct effect? Bone. 39:268–75. https://doi.org/10.1016/j.bone.2006.01.140. A cohort study reporting that serum PTH is more important to bone loss rates in the elderly than 25(OH) D levels.

    Article  CAS  PubMed  Google Scholar 

  100. Blain H, Vuillemin A, Blain A, Guillemin F, De Talance N, Doucet BJC. Age-related femoral bone loss in men: evidence for hyperparathyroidism and insulin-like growth factor-1 deficiency. J Gerontol. 2004;59:1285–9. https://doi.org/10.1093/gerona/59.12.1285.

    Article  Google Scholar 

  101. Hernández JLJL, Olmos JMJM, Pariente E, Nan D, Martínez J, Llorca J, et al. Influence of vitamin D status on vertebral fractures, bone mineral density, and bone turnover markers in normocalcemic postmenopausal women with high parathyroid hormone levels. J Clin Endocrinol Metab. 2013;98:1711–7. https://doi.org/10.1210/jc.2012-3931.

    Article  CAS  PubMed  Google Scholar 

  102. Wang X-F, Yu J-J, Wang X-J, Jing Y-X, Sun L-H, Tao B, et al. The associations between hypovitaminosis d, higher PTH levels with bone mineral densities, and risk of the 10-year probability of major osteoporotic fractures in Chinese patients with T2DM. Endocr Pract. 2018;24:334–41. https://doi.org/10.4158/EP-2017-0164.

    Article  PubMed  Google Scholar 

  103. Rejnmark L, Vestergaard P, Brot C, Mosekilde L. Increased fracture risk in normocalcemic postmenopausal women with high parathyroid hormone levels: a 16-year follow-up study. Calcif Tissue Int . 2011;88:238–245. https://doi.org/10.1007/s00223-010-9454-0.

    Article  CAS  PubMed  Google Scholar 

  104. Garnero P, Munoz F, Sornay-Rendu E, Delmas PD. Associations of vitamin D status with bone mineral density, bone turnover, bone loss and fracture risk in healthy postmenopausal women. The OFELY study Bone. 2007;40:716–22 https://www.sciencedirect.com/science/article/pii/S8756328206007411?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  105. Stone K, Bauer DC, Black DM, Sklarin P, Ensrud KE, Cummings SR. Hormonal predictors of bone loss in elderly women: a prospective study. J Bone Miner Res. 1998;13:1167–74. https://doi.org/10.1359/jbmr.1998.13.7.1167.

    Article  CAS  PubMed  Google Scholar 

  106. Dennison E, Eastell R, Fall CHDD, Kellingray S, Wood PJ, Cooper C. Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int. 1999;10:384–91. https://doi.org/10.1007/s001980050244.

    Article  CAS  PubMed  Google Scholar 

  107. Barone A, Giusti A, Pioli G, Girasole G, Razzano M, Pizzonia M, et al. Secondary hyperparathyroidism due to hypovitaminosis D affects bone mineral density response to alendronate in elderly women with osteoporosis: a randomized controlled trial. J Am Geriatr Soc. 2007;55:752–7. https://doi.org/10.1111/j.1532-5415.2007.01161.x.

    Article  PubMed  Google Scholar 

  108. Mosali P, Bernard L, Wajed J, Mohamed Z, Ewang M, Moore A, et al. Vitamin D status and parathyroid hormone concentrations influence the skeletal response to zoledronate and denosumab. Calcif Tissue Int. 2014;94:553–9. https://doi.org/10.1007/s00223-014-9840-0.

    Article  CAS  PubMed  Google Scholar 

  109. Kincse G, Varga J, Somogyi P, Szodoray P, Surányi P, Gaál J. The impact of secondary hyperparathyroidism on the efficacy of antiresorptive therapy. BMC Musculoskelet Disord. 2012;13:244. https://doi.org/10.1186/1471-2474-13-244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Deane A, Constancio L, Fogelman I, Hampson G. The impact of vitamin D status on changes in bone mineral density during treatment with bisphosphonates and after discontinuation following long-term use in post-menopausal osteoporosis. BMC Musculoskelet Disord. 2007;8:3. https://doi.org/10.1186/1471-2474-8-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. •• Bislev LS, Langagergaard Rødbro L, Rolighed L, Sikjaer T, Rejnmark L. Bone microstructure in response to vitamin D3 supplementation: a randomized placebo-controlled trial. Calcif Tissue Int. 2019;104:160–70. https://doi.org/10.1007/s00223-018-0481-6. A RCT on bone effects of decreasing PTH levels by vitamin D supplementation in postmenopausal women.

    Article  CAS  PubMed  Google Scholar 

  112. Rolighed L, Rejnmark L, Sikjaer T, Heickendorff L, Vestergaard P, Mosekilde L, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J Clin Endocrinol Metab. 2014;99:1072–80. https://doi.org/10.1210/jc.2013-3978.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Rejnmark.

Ethics declarations

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Epidemiology and Pathophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejnmark, L., Ejlsmark-Svensson, H. Effects of PTH and PTH Hypersecretion on Bone: a Clinical Perspective. Curr Osteoporos Rep 18, 103–114 (2020). https://doi.org/10.1007/s11914-020-00574-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00574-7

Keywords

Navigation