Skip to main content

Advertisement

Log in

Sclerostin: an Emerging Target for the Treatment of Cancer-Induced Bone Disease

  • Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, section editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides a summary of the current knowledge on Sost/sclerostin in cancers targeting the bone, discusses novel observations regarding its potential as a therapeutic approach to treat cancer-induced bone loss, and proposes future research needed to fully understand the potential of therapeutic approaches that modulate sclerostin function.

Recent Findings

Accumulating evidence shows that sclerostin expression is dysregulated in a number of cancers that target the bone. Further, new findings demonstrate that pharmacological inhibition of sclerostin in preclinical models of multiple myeloma results in a robust prevention of bone loss and preservation of bone strength, without apparent effects on tumor growth. These data raise the possibility of targeting sclerostin for the treatment of cancer patients with bone metastasis.

Summary

Sclerostin is emerging as a valuable target to prevent the bone destruction that accompanies the growth of cancer cells in the bone. Further studies will focus on combining anti-sclerostin therapy with tumor-targeted agents to achieve both beneficial skeletal outcomes and inhibition of tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle. 2006;5:1744–50.

    Article  CAS  PubMed  Google Scholar 

  2. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. ClinCancer Res. 2006;12:6243s–9s.

    Google Scholar 

  3. Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. NatRevCancer. 2016;16:373–86.

    CAS  Google Scholar 

  4. Lawson MA, McDonald MM, Kovacic N, Hua KW, Terry RL, Down J, et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 2015;6:8983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang N, Docherty F, Brown HK, Reeves K, Fowles A, Lawson M, et al. Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB J. 2015;29:3141–50.

    Article  CAS  PubMed  Google Scholar 

  6. Wang N, Reeves KJ, Brown HK, Fowles AC, Docherty FE, Ottewell PD, et al. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J Exp ClinCancer Res. 2015;34:124.

    Article  CAS  Google Scholar 

  7. Aggarwal R, Ghobrial IM, Roodman GD. Chemokines in multiple myeloma. Exp Hematol. 2006;34:1289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roodman GD. Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner Res. 2002;17:1921–5.

    Article  CAS  PubMed  Google Scholar 

  9. Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer. 2005;5(Suppl):S46–53.

    Article  CAS  PubMed  Google Scholar 

  10. Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood. 2006;108:3992–6.

    Article  CAS  PubMed  Google Scholar 

  11. Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci. 2016;1364:32–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23:435–41.

    Article  CAS  PubMed  Google Scholar 

  13. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sterling JA, Edwards JR, Martin TJ, Mundy GR. Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone. 2011;48:6–15.

    Article  CAS  PubMed  Google Scholar 

  15. Olechnowicz SW, Edwards CM. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res. 2014;74:1625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDonald MM, Fairfield H, Falank C, Reagan MR. Adipose, bone, and myeloma: contributions from the microenvironment. Calcif Tissue Int. 2017;100:433–48.

    Article  CAS  PubMed  Google Scholar 

  17. Delgado-Calle J, Bellido T. Osteocytes and skeletal pathophysiology. Curr Mol Biol Rep. 2015;1:157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2013;94:25–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Delgado-Calle J, Bellido T, Roodman GD. Role of osteocytes in multiple myeloma bone disease. Curr Opin Support Palliat Care. 2014;8:407–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015;75:2151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim W, Chung Y, Kim SH, Park S, Bae JH, Kim G, et al. Increased sclerostin levels after further ablation of remnant estrogen by aromatase inhibitors. Endocrinol Metab (Seoul). 2015;30:58–64.

    Article  Google Scholar 

  22. Kyvernitakis I, Rachner TD, Urbschat A, Hars O, Hofbauer LC, Hadji P. Effect of aromatase inhibition on serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with breast cancer. J Cancer Res Clin Oncol. 2014;140:1671–80.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Fontana B, Morales-Santana S, Varsavsky M, Garcia-Martin A, Garcia-Salcedo JA, Reyes-Garcia R, et al. Sclerostin serum levels in prostate cancer patients and their relationship with sex steroids. Osteoporos Int. 2014;25:645–51.

    Article  CAS  PubMed  Google Scholar 

  24. Yavropoulou MP, van Lierop AH, Hamdy NA, Rizzoli R, Papapoulos SE. Serum sclerostin levels in Paget's disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone. 2012;51:153–7.

    Article  CAS  PubMed  Google Scholar 

  25. Terpos E, Christoulas D, Katodritou E, Bratengeier C, Gkotzamanidou M, Michalis E, et al. Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int J Cancer. 2012;131:1466–71.

    Article  CAS  PubMed  Google Scholar 

  26. • Eda H, Santo L, Wein MN, Hu DZ, Cirstea DD, Nemani N, et al. Regulation of Sclerostin expression in multiple myeloma by Dkk-1; a potential therapeutic strategy for myeloma bone disease. J Bone Miner Res. 2016;31:1225–34. This paper presents data on the effects of anti-scleorstin therapy in combination with carfilzomib in an animal model of early myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.

    Article  CAS  PubMed  Google Scholar 

  28. Balemans W, Van Den Ende J, Freire Paes-Alves A, Dikkers FG, Willems PJ, Vanhoenacker F, et al. Localization of the gene for sclerosteosis to the van Buchem disease-gene region on chromosome 17q12-q21. Am J Hum Genet. 1999;64:1661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.

    Article  CAS  PubMed  Google Scholar 

  30. Niziolek PJ, Mac Donald BT, Kedlaya R, Zhang M, Bellido T, He X, et al. High bone mass-causing mutant LRP5 receptors are resistant to endogenous inhibitors in vivo. J Bone Miner Res. 2015;30:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29–37.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23:860–9.

    Article  PubMed  Google Scholar 

  33. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in van Buchem disease. Genome Res. 2005;15:928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intra-cortical remodeling. J Bone Miner Res. 2011;26:1035–46.

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280:19883–7.

    Article  CAS  PubMed  Google Scholar 

  37. Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286:19489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stolina M, Dwyer D, Niu QT, Villasenor KS, Kurimoto P, Grisanti M, et al. Temporal changes in systemic and local expression of bone turnover markers during six months of sclerostin antibody administration to ovariectomized rats. Bone. 2014;67:305–13.

    Article  CAS  PubMed  Google Scholar 

  39. Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.

    Article  CAS  PubMed  Google Scholar 

  40. Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280:21162–8.

    Article  CAS  PubMed  Google Scholar 

  41. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci USA. 2015;112:E478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE. 2011;6:e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, et al. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab. 2012;97:148–54.

    Article  CAS  PubMed  Google Scholar 

  45. Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease—related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97:E1473–7.

    Article  CAS  PubMed  Google Scholar 

  46. Klangjareonchai T, Nimitphong H, Saetung S, Bhirommuang N, Samittarucksa R, Chanprasertyothin S, et al. Circulating sclerostin and irisin are related and interact with gender to influence adiposity in adults with prediabetes. Int J Endocrinol. 2014;2014:261545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ukita M, Yamaguchi T, Ohata N, Tamura M. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells. J Cell Biochem. 2016;117:1419–28.

    Article  CAS  PubMed  Google Scholar 

  48. Fairfield H, Falank C, Harris E, DeMambro V, McDonald M, Pettit JA, et al. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol. 2017. https://doi.org/10.1002/jcp.25976.

  49. Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J Bone Miner Res. 2017;32:373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim SW, Lu Y, Williams EA, Lai F, Lee JY, Enishi T, et al. Sclerostin antibody administration converts bone lining cells into active osteoblasts. J Bone Miner Res. 2016;32:892–901.

    Article  CAS  Google Scholar 

  51. Poole KE, Van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19:1842–4.

    CAS  PubMed  Google Scholar 

  52. Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, et al. Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS ONE. 2015;10:e0138189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105:20764–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, et al. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem. 2013;114:1901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jager A, Gotz W, Lossdorfer S, Rath-Deschner B. Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res. 2010;45:246–54.

    Article  CAS  PubMed  Google Scholar 

  56. Van Bezooijen RL, Bronckers AL, Gortzak RA, Hogendoorn PC, Van der Wee-Pals L, Balemans W, et al. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res. 2009;88:569–74.

    Article  PubMed  CAS  Google Scholar 

  57. Roudier M, Li X, Niu QT, Pacheco E, Pretorius JK, Graham K, et al. Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. Arthritis Rheum. 2013;65:721–31.

    Article  CAS  PubMed  Google Scholar 

  58. Brandenburg VM, Kramann R, Koos R, Kruger T, Schurgers L, Muhlenbruch G, et al. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol. 2013;14:219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx 2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005;115:1210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu D, Mackenzie NC, Millan JL, Farquharson C, Mac Rae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE. 2011;6:e19595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wehmeyer C, Frank S, Beckmann D, Bottcher M, Cromme C, Konig U, et al. Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction. Sci Transl Med. 2016;8:330ra35.

    Article  PubMed  CAS  Google Scholar 

  62. Colucci S, Brunetti G, Oranger A, Mori G, Sardone F, Specchia G, et al. Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J. 2011;1:e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brunetti G, Oranger A, Mori G, Specchia G, Rinaldi E, Curci P, et al. Sclerostin is overexpressed by plasma cells from multiple myeloma patients. Ann N Y Acad Sci. 2011;1237:19–23.

    Article  CAS  PubMed  Google Scholar 

  64. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110:144–52.

    Article  PubMed  Google Scholar 

  65. Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M, et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res. 2007;22:1957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, et al. Targeted deletion of Sost distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci U S A. 2012;109:14092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. del Real A, Riancho JA, Delgado-Calle J. Epigenetic regulation of Sost/sclerostin expression. Curr Mol Biol Rep. 2017;3:85.

    Article  Google Scholar 

  68. Delgado-Calle J, Sanudo C, Bolado A, Fernandez AF, Arozamena J, Pascual-Carra MA, et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J Bone Miner Res. 2012;27:926–37.

    Article  CAS  PubMed  Google Scholar 

  69. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O'Brien CA, et al. Chronic elevation of PTH in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146:4577–83.

    Article  CAS  PubMed  Google Scholar 

  70. Bellido T, Saini V, Divieti Pajevic P. Effects of PTH on osteocyte function. Bone. 2013;54:250–7.

    Article  CAS  PubMed  Google Scholar 

  71. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37:148–58.

    Article  CAS  PubMed  Google Scholar 

  72. Loots GG, Keller H, Leupin O, Murugesh D, Collette NM, Genetos DC. TGF-beta regulates sclerostin expression via the ECR5 enhancer. Bone. 2012;50:663–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development. 2008;135:3801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Delgado-Calle J, Arozamena J, Perez-Lopez J, Bolado-Carrancio A, Sanudo C, Agudo G, et al. Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Mol Cell Endocrinol. 2013;369:27–34.

    Article  CAS  PubMed  Google Scholar 

  75. Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, et al. Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res. 2009;24:1434–49.

    Article  CAS  PubMed  Google Scholar 

  76. Koide M, Kobayashi Y, Yamashita T, Uehara S, Nakamura M, Hiraoka BY, et al. Bone formation is coupled to resorption via suppression of sclerostin expression by osteoclasts. J Bone Miner Res. 2017. https://doi.org/10.1002/jbmr.3175.

  77. Delgado-Calle J. Osteocytes and their messengers as targets for the treament of multiple myeloma. Clin Rev Bone Miner Metab. 2017;15:49–56.

    Article  Google Scholar 

  78. Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla PB, et al. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia. 2012;26:1391–401.

    Article  CAS  PubMed  Google Scholar 

  79. • Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76:1089–100. This paper desribes for the first time overproduction of sclerostin by osteocytes in bones colonized by myeloma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toscani D, Palumbo C, Dalla PB, Ferretti M, Bolzoni M, Marchica V, et al. The proteasome inhibitor Bortezomib maintains osteocyte viability in multiple myeloma patients by reducing both apoptosis and autophagy: a new function for proteasome inhibitors. J Bone Miner Res. 2016;31:815–27.

    Article  CAS  PubMed  Google Scholar 

  81. Hiasa M, Okui T, Allette YM, Ripsch MS, Sun-Wada GH, Wakabayashi H, et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Res. 2017;77:1283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sottnik JL, Campbell B, Mehra R, Behbahani-Nejad O, Hall CL, Keller ET. Osteocytes serve as a progenitor cell of osteosarcoma. J Cell Biochem. 2014;115:1420–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Inagaki Y, Hookway ES, Kashima TG, Munemoto M, Tanaka Y, Hassan AB, et al. Sclerostin expression in bone tumours and tumour-like lesions. Histopathology. 2016;69:470–8.

    Article  PubMed  Google Scholar 

  84. Mendoza-Villanueva D, Zeef L, Shore P. Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFbeta-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res. 2011;13:R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wibmer C, Amrein K, Fahrleitner-Pammer A, Gilg MM, Berghold A, Hutterer GC, et al. Serum sclerostin levels in renal cell carcinoma patients with bone metastases. Sci Rep. 2016;6:33551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rossini M, Viapiana O, Zanotti R, Tripi G, Perbellini O, Idolazzi L, et al. Dickkopf-1 and sclerostin serum levels in patients with systemic mastocytosis. Calcif Tissue Int. 2015;96:410–6.

    Article  CAS  PubMed  Google Scholar 

  87. Roforth MM, Fujita K, McGregor UI, Kirmani S, McCready LK, Peterson JM, et al. Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone. 2014;59:1–6.

    Article  CAS  PubMed  Google Scholar 

  88. Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2010;26:373–9.

    Article  PubMed Central  CAS  Google Scholar 

  89. Hudson BD, Hum NR, Thomas CB, Kohlgruber A, Sebastian A, Collette NM, et al. SOST inhibits prostate cancer invasion. PLoS One. 2015;10:e0142058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sebastian A, Hum NR, Hudson BD, Loots GG. Cancer-osteoblast interaction reduces Sost expression in osteoblasts and up-regulates lncRNA MALAT1 in prostate cancer. Microarrays (Basel). 2015;4:503–19.

    Article  Google Scholar 

  91. Wang XT, He YC, Zhou SY, Jiang JZ, Huang YM, Liang YZ, et al. Bone marrow plasma macrophage inflammatory protein protein-1 alpha(MIP-1 alpha) and sclerostin in multiple myeloma: relationship with bone disease and clinical characteristics. Leuk Res. 2014;38:525–31.

    Article  CAS  PubMed  Google Scholar 

  92. •• McDonald MM, Reagan MR, Youlten SE, Mohanty ST, Seckinger A, Terry RL, et al. Inhibiting the osteocyte specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma. Blood. 2017. https://doi.org/10.1182/blood-2017-03-773341. This study demonstrates the efficay of anti-sclerostin therapy, alone and in combinaiton with a bisphosphonate, to prevent bone loss and improve bone mechanical properties in mouse and human xenograft models of myeloma.

  93. •• Delgado-Calle J, Anderson J, Cregor MD, Condon KW, Kuhstoss SA, Plotkin LI, et al. Genetic deletion of sost or pharmacological inhibition of sclerostin prevent multiple myeloma-induced bone disease without affecting tumor growth. Leukemia. 2017. https://doi.org/10.1038/leu.2017.152. This study shows that genetic and pharmacologic inhibition of Sost/sclerostin prevents bone loss and stimulates bone formation in a mouse model of established myeloma.

  94. Coleman R, Gnant M, Morgan G, Clezardin P. Effects of bone-targeted agents on cancer progression and mortality. J Natl Cancer Inst. 2012;104:1059–67.

    Article  CAS  PubMed  Google Scholar 

  95. Ominsky MS, Boyce RW, Li X, Ke HZ. Effects of sclerostin antibodies in animal models of osteoporosis. Bone. 2017;96:63–75.

    Article  CAS  PubMed  Google Scholar 

  96. McClung MR. Clinical utility of anti-sclerostin antibodies. Bone. 2017;96:3–7.

    Article  CAS  PubMed  Google Scholar 

  97. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, ez-Perez A, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–20.

    Article  CAS  PubMed  Google Scholar 

  98. Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B, et al. Greater gains in spine and hip strength for Romosozumab compared to Teriparatide in postmenopausal women with low bone mass. J Bone Miner Res. 2017. https://doi.org/10.1002/jbmr.3176.

  99. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  100. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH, et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci U S A. 2004;101:6122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gregory LS, Choi W, Burke L, Clements JA. Breast cancer cells induce osteolytic bone lesions in vivo through a reduction in osteoblast activity in mice. PLoS ONE. 2013;8:e68103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bu G, Lu W, Liu CC, Selander K, Yoneda T, Hall C, et al. Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: implication for breast cancer osteolytic bone metastases. Int J Cancer. 2008;123:1034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Voorzanger-Rousselot N, Goehrig D, Journe F, Doriath V, Body JJ, Clezardin P, et al. Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer. 2007;97:964–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kristensen IB, Christensen JH, Lyng MB, Moller MB, Pedersen L, Rasmussen LM, et al. Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma. 2013;55:911–9.

    Article  PubMed  CAS  Google Scholar 

  105. Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res. 2009;24:425–36.

    Article  CAS  PubMed  Google Scholar 

  106. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109:2106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009;114:371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun. 2016;7:11505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, et al. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res. 2012;30:1541–8.

    Article  CAS  PubMed  Google Scholar 

  110. Suen PK, He YX, Chow DH, Huang L, Li C, Ke HZ, et al. Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J Orthop Res. 2014;32:997–1005.

    Article  CAS  PubMed  Google Scholar 

  111. Liu Y, Rui Y, Cheng TY, Huang S, Xu L, Meng F, et al. Effects of sclerostin antibody on the healing of femoral fractures in ovariectomised rats. Calcif Tissue Int. 2016;98:263–74.

    Article  CAS  PubMed  Google Scholar 

  112. Feng G, Chang-Qing Z, Yi-Min C, Xiao-Lin L. Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int Immunopharmacol. 2015;24:7–13.

    Article  PubMed  CAS  Google Scholar 

  113. Morse A, McDonald MM, Schindeler A, Peacock L, Mikulec K, Cheng TL, et al. Sclerostin antibody increases callus size and strength but does not improve fracture union in a challenged open rat fracture model. Calcif Tissue Int. 2017. https://doi.org/10.1007/s00223-017-0275-2.

  114. Tinsley BA, Dukas A, Pensak MJ, Adams DJ, Tang AH, Ominsky MS, et al. Systemic administration of sclerostin antibody enhances bone morphogenetic protein-induced femoral defect repair in a rat model. J Bone Joint Surg Am. 2015;97:1852–9.

    Article  PubMed  Google Scholar 

  115. Trotter TN, Gibson JT, Sherpa TL, Gowda PS, Peker D, Yang Y. Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone. Am J Pathol. 2016;186:3054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu W, Cao DD, Li QB, Mei HL, Hu Y, Guo T. Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy. Oncotarget. 2016;7:86075–86.

    PubMed  PubMed Central  Google Scholar 

  117. Morris EV, Edwards CM. Bone marrow adipose tissue: a new player in cancer metastasis to bone. Front Endocrinol (Lausanne). 2016;7:90.

    Google Scholar 

  118. Fowler JA, Lwin ST, Drake MT, Edwards JR, Kyle RA, Mundy GR, et al. Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood. 2011;118:5872–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Michelle McDonald is supported by The Kay Stubbs Cancer Research Grant, Cancer Council NSW. J.D.C. work was supported by the International Bone and Mineral Society Gideon and Sevgi Rodan Fellowship, the American Society of Hematology Scholar Award, and the International Myeloma Foundation Brian D. Novis Junior Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Delgado-Calle.

Ethics declarations

Conflict of Interest

Michelle McDonald reports grants paid to her institution from the Cancer Council NSW. Jesus Delgado-Calle reports grants from PharmaMar.

Human and Animal Rights and Informed Consent

This article includes studies with mice performed by the author. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not include any studies with humans performed by the authors.

Additional information

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, M.M., Delgado-Calle, J. Sclerostin: an Emerging Target for the Treatment of Cancer-Induced Bone Disease. Curr Osteoporos Rep 15, 532–541 (2017). https://doi.org/10.1007/s11914-017-0403-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0403-y

Keywords

Navigation