Skip to main content

Advertisement

Log in

Evolving Role of Molecular Imaging with 18F-Sodium Fluoride PET as a Biomarker for Calcium Metabolism

  • Imaging (T Lang and F Wehrli, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

18F-sodium fluoride (NaF) as an imaging tracer portrays calcium metabolic activity either in the osseous structures or in soft tissue. Currently, clinical use of NaF-PET is confined to detecting metastasis to the bone, but this approach reveals indirect evidence for disease activity and will have limited use in the future in favor of more direct approaches that visualize cancer cells in the read marrow where they reside. This has proven to be the case with FDG-PET imaging in most cancers. However, a variety of studies support the application of NaF-PET to assess benign osseous diseases. In particular, bone turnover can be measured from NaF uptake to diagnose osteoporosis. Several studies have evaluated the efficacy of bisphosphonates and their lasting effects as treatment for osteoporosis using bone turnover measured by NaF-PET. Additionally, NaF uptake in vessels tracks calcification in the plaques at the molecular level, which is relevant to coronary artery disease. Also, NaF-PET imaging of diseased joints is able to project disease progression in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Further studies suggest potential use of NaF-PET in domains such as back pain, osteosarcoma, stress-related fracture, and bisphosphonate-induced osteonecrosis of the jaw. The critical role of NaF-PET in disease detection and characterization of many musculoskeletal disorders has been clearly demonstrated in the literature, and these methods will become more widespread in the future. The data from PET imaging are quantitative in nature, and as such, it adds a major dimension to assessing disease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med. 1972;2(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  2. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med Off Publ Soc Nucl Med. 1962;3:332–4.

    CAS  Google Scholar 

  3. Thrall JH. Technetium-99m labeled agents for skeletal imaging. CRC Crit Rev Clin Radiol Nucl Med. 1976;8(1):1–31.

    CAS  PubMed  Google Scholar 

  4. Costeas A, Woodard HQ, Laughlin JS. Depletion of 18F from blood flowing through bone. J Nucl Med Off Publ Soc Nucl Med. 1970;11(1):43–5.

    CAS  Google Scholar 

  5. Weber DA, Greenberg EJ, Dimich A, Kenny PJ, Rothschild EO, Myers WP, et al. Kinetics of radionuclides used for bone studies. J Nucl Med Off Publ Soc Nucl Med. 1969;10(1):8–17.

    CAS  Google Scholar 

  6. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35(10):1766–74.

    Article  PubMed  Google Scholar 

  7. Grecchi E, O’Doherty J, Veronese M, Tsoumpas C, Cook GJ, Turkheimer FE. Multimodal partial-volume correction: application to 18F-fluoride PET/CT bone metastases studies. J Nucl Med Off Publ Soc Nucl Med. 2015;56(9):1408–14.

    CAS  Google Scholar 

  8. Sachpekidis C, Goldschmidt H, Hose D, Pan L, Cheng C, Kopka K, et al. PET/CT studies of multiple myeloma using (18) F-FDG and (18) F-NaF: comparison of distribution patterns and tracers’ pharmacokinetics. Eur J Nucl Med Mol Imaging. 2014;41(7):1343–53. A comparison of the efficacy of FDG and NaF regarding detection of myeloma-indicative osseous lesions.

    Article  CAS  PubMed  Google Scholar 

  9. Basu S, Alavi A. Bone marrow and not bone is the primary site for skeletal metastasis: critical role of [18F]fluorodeoxyglucose positron emission tomography in this setting. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(10):1297. author reply 1297–1299.

    Article  Google Scholar 

  10. Blebea JS, Houseni M, Torigian DA, Fan C, Mavi A, Zhuge Y, et al. Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin Nucl Med. 2007;37(3):185–94.

    Article  PubMed  Google Scholar 

  11. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Study of osteoporotic fractures research g: hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93.

    Article  CAS  PubMed  Google Scholar 

  12. Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Imaging of site specific bone turnover in osteoporosis using positron emission tomography. Curr Osteoporos Rep. 2014;12(4):475–85.

    Article  PubMed  Google Scholar 

  13. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med Off Publ Soc Nucl Med. 1992;33(5):633–42.

    CAS  Google Scholar 

  14. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1983;3(1):1–7.

    Article  CAS  Google Scholar 

  15. Frost ML, Cook GJ, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res Off J Am Soc Bone Miner Res. 2003;18(12):2215–22.

    Article  CAS  Google Scholar 

  16. Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(5):1002–11.

    Article  CAS  Google Scholar 

  17. Bauer DC, Garnero P, Bilezikian JP, Greenspan SL, Ensrud KE, Rosen CJ, et al. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2006;91(4):1370–5.

    Article  CAS  PubMed  Google Scholar 

  18. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349(13):1207–15.

    Article  CAS  PubMed  Google Scholar 

  19. Lindsay R, Nieves J, Formica C, Henneman E, Woelfert L, Shen V, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet. 1997;350(9077):550–5.

    Article  CAS  PubMed  Google Scholar 

  20. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  CAS  PubMed  Google Scholar 

  21. Frost ML, Moore AE, Siddique M, Blake GM, Laurent D, Borah B, et al. (1)(8)F-fluoride PET as a noninvasive imaging biomarker for determining treatment efficacy of bone active agents at the hip: a prospective, randomized, controlled clinical study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28(6):1337–47.

    Article  CAS  Google Scholar 

  22. Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med Off Publ Soc Nucl Med. 2009;50(11):1808–14.

    CAS  Google Scholar 

  23. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  CAS  PubMed  Google Scholar 

  24. Rubin MR, Bilezikian JP. Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab. 2002;87(9):4033–41.

    Article  CAS  PubMed  Google Scholar 

  25. Frost ML, Siddique M, Blake GM, Moore AE, Marsden PK, Schleyer PJ, et al. Regional bone metabolism at the lumbar spine and hip following discontinuation of alendronate and risedronate treatment in postmenopausal women. Osteoporos Int J Established Result Cooperation Between Eur Found Osteoporos National Osteoporos Found USA. 2012;23(8):2107–16. An analysis of the effects of bisphosphonate discontinuation on bone metabolism at the spine and hip measured using NaF-PET.

    Article  CAS  Google Scholar 

  26. Blake GM, Siddique M, Puri T, Frost ML, Moore AE, Cook GJ, et al. A semipopulation input function for quantifying static and dynamic 18F-fluoride PET scans. Nucl Med Commun. 2012;33(8):881–8.

    Article  PubMed  Google Scholar 

  27. Siddique M, Blake GM, Frost ML, Moore AE, Puri T, Marsden PK, et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. Eur J Nucl Med Mol Imaging. 2012;39(2):337–43.

    Article  PubMed  Google Scholar 

  28. Siddique M, Frost ML, Moore AE, Fogelman I, Blake GM. Correcting (18)F-fluoride PET static scan measurements of skeletal plasma clearance for tracer efflux from bone. Nucl Med Commun. 2014;35(3):303–10.

    Article  CAS  PubMed  Google Scholar 

  29. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–22.

    Article  CAS  PubMed  Google Scholar 

  31. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.

    Article  CAS  PubMed  Google Scholar 

  32. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.

    Article  CAS  PubMed  Google Scholar 

  33. Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB, et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA. 2003;290(7):891–7.

    Article  PubMed  Google Scholar 

  34. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  35. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6(12):1250–9.

    Article  PubMed  Google Scholar 

  36. Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.

    Article  CAS  PubMed  Google Scholar 

  37. Joshi NV, Vesey A, Newby DE, Dweck MR. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep. 2014;16(9):521.

    Article  PubMed  Google Scholar 

  38. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58(6):603–14.

    Article  CAS  PubMed  Google Scholar 

  39. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    Article  CAS  PubMed  Google Scholar 

  40. Bucerius J, Duivenvoorden R, Mani V, Moncrieff C, Rudd JH, Calcagno C, et al. Prevalence and risk factors of carotid vessel wall inflammation in coronary artery disease patients: FDG-PET and CT imaging study. JACC Cardiovasc Imaging. 2011;4(11):1195–205.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bucerius J, Mani V, Moncrieff C, Rudd JH, Machac J, Fuster V, et al. Impact of noninsulin-dependent type 2 diabetes on carotid wall 18F-fluorodeoxyglucose positron emission tomography uptake. J Am Coll Cardiol. 2012;59(23):2080–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim TN, Kim S, Yang SJ, Yoo HJ, Seo JA, Kim SG, et al. Vascular inflammation in patients with impaired glucose tolerance and type 2 diabetes: analysis with 18F-fluorodeoxyglucose positron emission tomography. Circ Cardiovasc Imaging. 2010;3(2):142–8.

    Article  PubMed  Google Scholar 

  43. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med Off Publ Soc Nucl Med. 2008;49(6):871–8.

    Google Scholar 

  44. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48(9):1825–31.

    Article  CAS  PubMed  Google Scholar 

  45. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med Off Publ Soc Nucl Med. 2009;50(10):1611–20.

    Google Scholar 

  46. Menezes LJ, Kotze CW, Hutton BF, Endozo R, Dickson JC, Cullum I, et al. Vascular inflammation imaging with 18F-FDG PET/CT: when to image? J Nucl Med Off Publ Soc Nucl Med. 2009;50(6):854–7.

    Google Scholar 

  47. Basu S, Zaidi H, Houseni M, Bural G, Udupa J, Acton P, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med. 2007;37(3):223–39.

    Article  PubMed  Google Scholar 

  48. Blomberg BA, Thomassen A, de Jong PA, Simonsen JA, Lam MG, Nielsen AL, et al. Impact of personal characteristics and technical factors on quantification of sodium 18F-fluoride uptake in human arteries: prospective evaluation of healthy subjects. J Nucl Med Off Publ Soc Nucl Med. 2015;56(10):1534–40. This study found that blood activity, injected dose, and PET/CT system should be considered to generate accurate estimates of arterial 18F-NaF uptake.

    CAS  Google Scholar 

  49. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med Off Publ Soc Nucl Med. 2010;51(6):862–5.

    Google Scholar 

  50. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med Off Publ Soc Nucl Med. 2011;52(3):362–8.

    Google Scholar 

  51. Beheshti M, Saboury B, Mehta NN, Torigian DA, Werner T, Mohler E, et al. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography--a novel concept. Hell J Nucl Med. 2011;14(2):114–20.

    PubMed  Google Scholar 

  52. Basu S, Hoilund-Carlsen PF, Alavi A. Assessing global cardiovascular molecular calcification with 18F-fluoride PET/CT: will this become a clinical reality and a challenge to CT calcification scoring? Eur J Nucl Med Mol Imaging. 2012;39(4):660–4.

    Article  PubMed  Google Scholar 

  53. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48.

    Article  CAS  PubMed  Google Scholar 

  54. Janssen T, Bannas P, Herrmann J, Veldhoen S, Busch JD, Treszl A, et al. Association of linear (1)(8)F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J Nucl Cardiol. 2013;20(4):569–77.

    Article  PubMed  Google Scholar 

  55. Li Y, Berenji GR, Shaba WF, Tafti B, Yevdayev E, Dadparvar S. Association of vascular fluoride uptake with vascular calcification and coronary artery disease. Nucl Med Commun. 2012;33(1):14–20.

    Article  PubMed  Google Scholar 

  56. Abdelbaky A, Corsini E, Figueroa AL, Fontanez S, Subramanian S, Ferencik M, et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imaging. 2013;6(5):747–54.

    Article  PubMed  Google Scholar 

  57. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495. Electron microscopy, autoradiography, histology and preclinical and clinical PET/CT were used to analyse NaF binding. The authors showed that NaF-PET/CT imaging can distinguish between areas of macro- and microcalcification in active unstable atherosclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi N, Inaba Y, Tateishi U, Ike H, Kubota S, Inoue T, et al. Comparison of 18F-fluoride positron emission tomography and magnetic resonance imaging in evaluating early-stage osteoarthritis of the hip. Nucl Med Commun. 2015;36(1):84–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New application of 18F-fluoride PET for the detection of bone remodeling in early-stage osteoarthritis of the hip. Clin Nucl Med. 2013;38(10):e379–83.

    Article  PubMed  Google Scholar 

  60. Hirata Y, Inaba Y, Kobayashi N, Ike H, Yukizawa Y, Fujimaki H, et al. Correlation between mechanical stress by finite element analysis and 18F-fluoride PET uptake in hip osteoarthritis patients. J Orthop Res Off Publ Orthop Res Soc. 2015;33(1):78–83.

    Article  CAS  Google Scholar 

  61. Lee JW, Lee SM, Kim SJ, Choi JW, Baek KW. Clinical utility of fluoride-18 positron emission tomography/CT in temporomandibular disorder with osteoarthritis: comparisons with 99mTc-MDP bone scan. Dento Maxillo Facial Radiol. 2013;42(2):29292350.

    Article  CAS  Google Scholar 

  62. Watanabe T, Takase-Minegishi K, Ihata A, Kunishita Y, Kishimoto D, Kamiyama R, Hama M, Yoshimi R, Kirino Y, Asami Y, et al. F-FDG and F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis. Mod Rheumatol Jpn Rheumatism Assoc. 2015:1–8. This paper showed that both FDG and NaF-PET signals were associated with RA-affected joints, especially those with ongoing erosive changes.

  63. Fischer DR, Pfirrmann CW, Zubler V, Stumpe KD, Seifert B, Strobel K, et al. High bone turnover assessed by 18F-fluoride PET/CT in the spine and sacroiliac joints of patients with ankylosing spondylitis: comparison with inflammatory lesions detected by whole body MRI. EJNMMI Res. 2012;2(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee SG, Kim IJ, Kim KY, Kim HY, Park KJ, Kim SJ, et al. Assessment of bone synthetic activity in inflammatory lesions and syndesmophytes in patients with ankylosing spondylitis: the potential role of 18F-fluoride positron emission tomography-magnetic resonance imaging. Clin Exp Rheumatol. 2015;33(1):90–7. This paper assessed bone synthetic activity in inflammatory lesions and syndesmophytes in patients with ankylosing spondylitis using NaF-PET/MRI.

    PubMed  Google Scholar 

  65. Strobel K, Fischer DR, Tamborrini G, Kyburz D, Stumpe KD, Hesselmann RG, et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37(9):1760–5.

    Article  PubMed  Google Scholar 

  66. Bruijnen ST, van der Weijden MA, Klein JP, Hoekstra OS, Boellaard R, van Denderen JC, et al. Bone formation rather than inflammation reflects ankylosing spondylitis activity on PET-CT: a pilot study. Arthritis Res Ther. 2012;14(2):R71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilde F, Steinhoff K, Frerich B, Schulz T, Winter K, Hemprich A, et al. Positron-emission tomography imaging in the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(3):412–9.

    Article  PubMed  Google Scholar 

  68. Guggenberger R, Fischer DR, Metzler P, Andreisek G, Nanz D, Jacobsen C, et al. Bisphosphonate-induced osteonecrosis of the jaw: comparison of disease extent on contrast-enhanced MR imaging, [18F] fluoride PET/CT, and conebeam CT imaging. AJNR Am J Neuroradiol. 2013;34(6):1242–7.

    Article  CAS  PubMed  Google Scholar 

  69. Raje N, Woo SB, Hande K, Yap JT, Richardson PG, Vallet S, et al. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008;14(8):2387–95.

    Article  CAS  PubMed  Google Scholar 

  70. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop. 2007;27(3):277–82.

    Article  PubMed  Google Scholar 

  71. Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop. 2007;27(1):90–3.

    Article  PubMed  Google Scholar 

  72. Gamie S, El-Maghraby T. The role of PET/CT in evaluation of Facet and Disc abnormalities in patients with low back pain using (18)F-Fluoride. Nucl Med Rev Cent East Eur. 2008;11(1):17–21.

    PubMed  Google Scholar 

  73. Fischer DR, Zweifel K, Treyer V, Hesselmann R, Johayem A, Stumpe KD, et al. Assessment of successful incorporation of cages after cervical or lumbar intercorporal fusion with [(18)F]fluoride positron-emission tomography/computed tomography. Eur Spine J. 2011;20(4):640–8.

    Article  PubMed  Google Scholar 

  74. Cronlein M, Rauscher I, Beer AJ, Schwaiger M, Schaffeler C, Beirer M, et al. Visualization of stress fractures of the foot using PET-MRI: a feasibility study. Eur J Med Res. 2015;20(1):99. This paper revealed that PET-MRI would be a feasible technique to recognize stress fractures of the foot and concluded that conservative treatment plans could lead to good clinical outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hoh CK, Hawkins RA, Dahlbom M, Glaspy JA, Seeger LL, Choi Y, et al. Whole body skeletal imaging with [18F] fluoride ion and PET. J Comput Assist Tomogr. 1993;17(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  76. Wilson 3rd GH, Gore JC, Yankeelov TE, Barnes S, Peterson TE, True JM, et al. An approach to breast cancer diagnosis via PET imaging of microcalcifications using (18)F-NaF. J Nucl Med Off Publ Soc Nucl Med. 2014;55(7):1138–43.

    CAS  Google Scholar 

  77. Basu S, Torigian D, Alavi A. Evolving concept of imaging bone marrow metastasis in the twenty-first century: critical role of FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35(3):465–71.

    Article  PubMed  Google Scholar 

  78. Brenner W, Vernon C, Conrad EU, Eary JF. Assessment of the metabolic activity of bone grafts with (18)F-fluoride PET. Eur J Nucl Med Mol Imaging. 2004;31(9):1291–8.

    Article  CAS  PubMed  Google Scholar 

  79. Sorensen J, Michaelsson K, Strand H, Sundelin S, Rahme H. Long-standing increased bone turnover at the fixation points after anterior cruciate ligament reconstruction: a positron emission tomography (PET) study of 8 patients. Acta Orthop. 2006;77(6):921–5.

    Article  PubMed  Google Scholar 

  80. Sorensen J, Ullmark G, Langstrom B, Nilsson O. Rapid bone and blood flow formation in impacted morselized allografts: positron emission tomography (PET) studies on allografts in 5 femoral component revisions of total hip arthroplasty. Acta Orthop Scand. 2003;74(6):633–43.

    Article  PubMed  Google Scholar 

  81. Ullmark G, Nilsson O, Maripuu E, Sorensen J. Analysis of bone mineralization on uncemented femoral stems by [18F]-fluoride-PET: a randomized clinical study of 16 hips in 8 patients. Acta Orthop. 2013;84(2):138–44.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ullmark G, Sorensen J, Langstrom B, Nilsson O. Bone regeneration 6 years after impaction bone grafting: a PET analysis. Acta Orthop. 2007;78(2):201–5.

    Article  PubMed  Google Scholar 

  83. Ullmark G, Sorensen J, Nilsson O. Bone healing of severe acetabular defects after revision arthroplasty. Acta Orthop. 2009;80(2):179–83.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ullmark G, Sorensen J, Nilsson O. Analysis of bone formation on porous and calcium phosphate-coated acetabular cups: a randomised clinical [18F]fluoride PET study. Hip Int J Clin Exp Res Hip Pathol Ther. 2012;22(2):172–8.

    Google Scholar 

  85. Ullmark G, Sundgren K, Milbrink J, Nilsson O, Sorensen J. Osteonecrosis following resurfacing arthroplasty. Acta Orthop. 2009;80(6):670–4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cook GJ, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17(5):854–9.

    Article  CAS  Google Scholar 

  87. Installe J, Nzeusseu A, Bol A, Depresseux G, Devogelaer JP, Lonneux M. (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med Off Publ Soc Nucl Med. 2005;46(10):1650–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflict of Interest

Raynor W, Houshmand S, Gholami S, Blomberg BA, Werner TJ, Høilund-Carlsen PF, Baker J, and Alavi A declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raynor, W., Houshmand, S., Gholami, S. et al. Evolving Role of Molecular Imaging with 18F-Sodium Fluoride PET as a Biomarker for Calcium Metabolism. Curr Osteoporos Rep 14, 115–125 (2016). https://doi.org/10.1007/s11914-016-0312-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0312-5

Keywords

Navigation