Skip to main content
Log in

Immune Checkpoint Inhibitors in Geriatric Oncology

  • REVIEW
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This manuscript will update prior reviews of immune checkpoint inhibitors (ICIs) in light of basic science, translational, and clinical discoveries in the field of cancer immunology and aging.

Recent Findings

ICIs have led to significant advancements in the treatment of cancer. Landmark trials of ICIs have cited the efficacy and toxicity experienced by older patients, but most trials are not specifically designed to address outcomes in older patients. Underlying mechanisms of aging, like cellular senescence, affect the immune system and may ultimately alter the host’s response to ICIs. Validated tools are currently used to identify older adults who may be at greater risk of developing complications from their cancer treatment.

Summary

We review changes in the aging immune system that may alter responses to ICIs, report outcomes and toxicities in older adults from recent ICI clinical trials, and discuss clinical tools specific to older patients with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Balducci L. Geriatric oncology, spirituality, and palliative care. J Pain Symptom Manage. 2019;57(1):171–5.

    Article  PubMed  Google Scholar 

  2. Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  3. Pilleron S, et al. International trends in cancer incidence in middle-aged and older adults in 44 countries. J Geriatr Oncol. 2022;13(3):346–55.

    Article  CAS  PubMed  Google Scholar 

  4. Lee L, Gupta M, Sahasranaman S. Immune checkpoint inhibitors: an introduction to the next-generation cancer immunotherapy. J Clin Pharmacol. 2016;56(2):157–69.

    Article  CAS  PubMed  Google Scholar 

  5. Yoo MJ, et al. Immune checkpoint inhibitors: An emergency medicine focused review. Am J Emerg Med. 2021;50:335–44.

    Article  PubMed  Google Scholar 

  6. Shiravand Y, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Switzer B, et al. Managing metastatic melanoma in 2022: a clinical review. JCO Oncol Pract. 2022;18(5):335–51.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Godby RC, Johnson DB, Williams GR. Immunotherapy in older adults with cancer. Curr Oncol Rep. 2019;21(7):56.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Gorgoulis V, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–27. Describes the latest consensus from the International Cell Senescence Association on the key cellular and molecular features of senescence.

    Article  CAS  PubMed  Google Scholar 

  10. Karin O, et al. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat Commun. 2019;10(1):5495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ladomersky E, et al. Advanced age increases immunosuppression in the brain and decreases immunotherapeutic efficacy in subjects with glioblastoma. Clin Cancer Res. 2020;26(19):5232–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsukamoto H, et al. Aging-associated and CD4 T-cell-dependent ectopic CXCL13 activation predisposes to anti-PD-1 therapy-induced adverse events. Proc Natl Acad Sci U S A. 2022;119(29):e2205378119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sceneay J, et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 2019;9(9):1208–27.

    Article  CAS  PubMed  Google Scholar 

  15. Nicoli F, et al. Primary immune responses are negatively impacted by persistent herpesvirus infections in older people: results from an observational study on healthy subjects and a vaccination trial on subjects aged more than 70 years old. EBioMedicine. 2022;76:103852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fletcher JM, et al. Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol. 2005;175(12):8218–25.

    Article  CAS  PubMed  Google Scholar 

  17. Tsukamoto H, et al. Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci U S A. 2009;106(43):18333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. den Braber I, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity. 2012;36(2):288–97.

    Article  Google Scholar 

  19. Yang KY, et al. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol. 2023;115:19.

    Article  Google Scholar 

  20. Yamauchi A, et al. Negative influence of aging on differentiation and proliferation of CD8(+) T-cells in dogs. Vet Sci. 2023;10(9):541.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mahalingam SS, et al. Distinct SARS-CoV-2 specific NLRP3 and IL-1beta responses in T cells of aging patients during acute COVID-19 infection. Front Immunol. 2023;14:1231087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Osterholm MT, et al. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):36–44.

    Article  PubMed  Google Scholar 

  23. de Boer RJ, Tesselaar K, Borghans JAM. Better safe than sorry: naive T-cell dynamics in healthy ageing. Semin Immunol. 2023;70: 101839.

    Article  PubMed  Google Scholar 

  24. •• Soerens AG, et al. Functional T cells are capable of supernumerary cell division and longevity. Nature. 2023;614(7949):762–6. This article is able to show that T cells from a single mouse are able to to be expanded for over ten years, exceeding the mouse lifespan. These cells can remain competent to vaccination responses ater this time frame.

    Article  CAS  PubMed  Google Scholar 

  25. •• Zhang B, et al. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. Nat Aging. 2023;3(8):948–64. This study shows that aged mice are able to have improved physiological outcomes when they share a circulatory system with a young mouse, with effects occuring on a physiological and molecular (including epigenetic) scale.

    Article  CAS  PubMed  Google Scholar 

  26. Wang TW, et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature. 2022;611(7935):358–64.

    Article  CAS  PubMed  Google Scholar 

  27. Pippin JW et al. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J Clin Invest 2022;132(16). https://doi.org/10.1172/JCI156250.

  28. Presley CJ, et al. Immunotherapy in older adults with cancer. J Clin Oncol. 2021;39(19):2115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. •• Voruganti T, et al. Association between age and survival trends in advanced non-small cell lung cancer after adoption of immunotherapy. JAMA Oncol. 2023;9(3):334–41. This is a recent meta-analysis looking at outcomes in older patients with NSCLC receiving checkpoint inhibitors.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spigel DR, et al. Safety, efficacy, and patient-reported health-related quality of life and symptom burden with nivolumab in patients with advanced non-small cell lung cancer, including patients aged 70 years or older or with poor performance status (CheckMate 153). J Thorac Oncol. 2019;14(9):1628–39.

    Article  CAS  PubMed  Google Scholar 

  31. Felip E, et al. CheckMate 171: A phase 2 trial of nivolumab in patients with previously treated advanced squamous non-small cell lung cancer, including ECOG PS 2 and elderly populations. Eur J Cancer. 2020;127:160–72.

    Article  CAS  PubMed  Google Scholar 

  32. •• Blanco R, et al. Pembrolizumab as first-line treatment for advanced NSCLC in older adults: a phase II clinical trial evaluating geriatric and quality-of-life outcomes. Lung Cancer. 2023;183: 107318. This is a prospective ICI trial that also includes geriatric and quality -of-life outcomes.

    Article  CAS  PubMed  Google Scholar 

  33. Antonia SJ, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29.

    Article  CAS  PubMed  Google Scholar 

  34. Socinski MA, et al. Durvalumab after concurrent chemoradiotherapy in elderly patients with unresectable stage III non-small-cell lung cancer (PACIFIC). Clin Lung Cancer. 2021;22(6):549–61.

    Article  CAS  PubMed  Google Scholar 

  35. Durvalumab maintenance after thoracic chemoradiotherapy in frail small cell lung cancer patients whose disease is limited to the thorax. cited 2023 Nov 15]; Available from: https://classic.clinicaltrials.gov/ct2/show/study/NCT05617963.

  36. Chemotherapy combined with immunotherapy vs immunotherapy alone for older adults with stage IIIB-IV lung cancer, the ACHIEVE trial - tabular view. cited 2023 Nov 15]; Available from: https://classic.clinicaltrials.gov/ct2/show/record/NCT06096844.

  37. Patel SP, et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N Engl J Med. 2023;388(9):813–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tawbi HA, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kahlon N, et al. Melanoma treatments and mortality rate trends in the US, 1975 to 2019. JAMA Netw Open. 2022;5(12): e2245269.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eggermont AMM, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801.

    Article  CAS  PubMed  Google Scholar 

  41. Grossmann KF, et al. Adjuvant pembrolizumab versus IFNalpha2b or ipilimumab in resected high-risk melanoma. Cancer Discov. 2022;12(3):644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luke JJ, et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet. 2022;399(10336):1718–29.

    Article  CAS  PubMed  Google Scholar 

  43. Weber J, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmer L, et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;395(10236):1558–68.

    Article  CAS  PubMed  Google Scholar 

  45. Weber JS, et al. Adjuvant therapy of nivolumab combined with ipilimumab versus nivolumab alone in patients with resected stage IIIB-D or stage IV melanoma (CheckMate 915). J Clin Oncol. 2023;41(3):517–27.

    Article  CAS  PubMed  Google Scholar 

  46. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  48. Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  49. Bruijnen CP, et al. Frailty and checkpoint inhibitor toxicity in older patients with melanoma. Cancer. 2022;128(14):2746–52.

    Article  PubMed  Google Scholar 

  50. Tomita Y, et al. Efficacy and safety of avelumab plus axitinib in elderly patients with advanced renal cell carcinoma: extended follow-up results from JAVELIN Renal 101. ESMO Open. 2022;7(2): 100450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pal SK, et al. Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2022;400(10358):1103–16.

    Article  CAS  PubMed  Google Scholar 

  52. Araujo DV, et al. Efficacy of immune-checkpoint inhibitors (ICI) in the treatment of older adults with metastatic renal cell carcinoma (mRCC) - an International mRCC Database Consortium (IMDC) analysis. J Geriatr Oncol. 2021;12(5):820–6.

    Article  CAS  PubMed  Google Scholar 

  53. Fujiwara Y, Miyashita H, Liaw BC. First-line therapy for elderly patients with advanced renal cell carcinoma in the immuno-oncology era: a network meta-analysis. Cancer Immunol Immunother. 2023;72(6):1355–64.

    Article  CAS  PubMed  Google Scholar 

  54. Debien V, et al. Immunotherapy in breast cancer: an overview of current strategies and perspectives. npj Breast Cancer. 2023;9(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Winer EP, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(4):499–511.

    Article  CAS  PubMed  Google Scholar 

  56. Chen M, et al. Incidence and mortality trends in gastric cancer in the United States, 1992–2019. Int J Cancer. 2023;152(9):1827–36.

    Article  CAS  PubMed  Google Scholar 

  57. Kelly RJ, et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 2021;384(13):1191–203.

    Article  CAS  PubMed  Google Scholar 

  58. Kang YK, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022;23(2):234–47.

    Article  CAS  PubMed  Google Scholar 

  59. Janjigian YY, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ebert MP, et al. Second-line therapy with nivolumab plus ipilimumab for older patients with oesophageal squamous cell cancer (RAMONA): a multicentre, open-label phase 2 trial. Lancet Healthy Longev. 2022;3(6):e417–27.

    Article  PubMed  Google Scholar 

  61. Tsakonas G, et al. Safety and efficacy of immune checkpoint blockade in patients with advanced nonsmall cell lung cancer and brain metastasis. Int J Cancer. 2023;153:1556.

    Article  CAS  PubMed  Google Scholar 

  62. Kreidieh FY, Tawbi HA. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition. Therapeutic Adv Med Oncol. 2023;15:17588359231186028.

    Article  CAS  Google Scholar 

  63. Berghoff AS, et al. Immune checkpoint inhibitors in brain metastases: from biology to treatment. Am Soc Clin Oncol Educ Book. 2016;36:e116–22.

    Article  Google Scholar 

  64. Lim M, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022;24(11):1935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Omuro A, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol. 2023;25(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  66. Bouffet E, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.

    Article  CAS  PubMed  Google Scholar 

  67. Sim H-W et al. NUTMEG: a randomized phase II study of nivolumab and temozolomide versus temozolomide alone in newly diagnosed older patients with glioblastoma. Neuro-Oncol Adv 2023;5(1):vdad124. https://doi.org/10.1093/noajnl/vdad124.

  68. Paderi A, et al. Safety of immune checkpoint inhibitors in elderly patients: an observational study. Curr Oncol. 2021;28(5):3259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Luciani A, et al. Safety and effectiveness of immune checkpoint inhibitors in older patients with cancer: a systematic review of 48 real-world studies. Drugs Aging. 2021;38(12):1055–65.

    Article  PubMed  Google Scholar 

  70. Nebhan CA, et al. Clinical outcomes and toxic effects of single-agent immune checkpoint inhibitors among patients aged 80 years or older with cancer: a multicenter international cohort study. JAMA Oncol. 2021;7(12):1856–61.

    Article  PubMed  Google Scholar 

  71. Gomes F, et al. A prospective cohort study on the safety of checkpoint inhibitors in older cancer patients - the ELDERS study. ESMO Open. 2021;6(1): 100042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cancer and Aging Research Group. Improving the care of older adults with cancer. Chemo-Toxicity Calculator. cited 2023 Dec 15]; Available from: http://www.mycarg.org/?page_id=2405.

  73. Mohile SG, et al. Practical assessment and management of vulnerabilities in older patients receiving chemotherapy: ASCO guideline for geriatric oncology summary. J Oncol Pract. 2018;14(7):442–6.

    Article  PubMed  Google Scholar 

  74. Williams GR, et al. Practical assessment and management of vulnerabilities in older patients receiving systemic cancer therapy: ASCO guideline questions and answers. JCO Oncol Pract. 2023;19(9):718–23.

    Article  PubMed  Google Scholar 

  75. Gridelli C, et al. Immunotherapy in the first-line treatment of elderly patients with advanced non-small-cell lung cancer: results of an International Experts Panel Meeting by the Italian Association of Thoracic Oncology (AIOT). ESMO Open. 2023;8(2): 101192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garcia MV, et al. Screening tools for identifying older adults with cancer who may benefit from a geriatric assessment: a systematic review. JAMA Oncol. 2021;7(4):616–27.

    Article  PubMed  Google Scholar 

  77. Chon J, et al. Validity of a self-administered G8 screening test for older patients with cancer. J Geriatr Oncol. 2023;14(7): 101553.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SQ, MG, and MK conceived the paper. All authors contributed to the writing and final approval of the manuscript.

Corresponding author

Correspondence to Mustafa Khasraw.

Ethics declarations

Competing interests

MK reports research funding from: BMS, AbbVie, Daiichi Sankyo, BioNTech, Immorna Therapeutics, Celldex, Astellas, CNS Pharmaceuticals. Honoraria: GSK, Novocure, JAX lab for genomic research, Johnson and Johnson, Voyager therapeutics and George Clinical. The other authors have no disclosures.

Conflict of Interest

MK reports research funding from BMS, AbbVie, Daiichi Sankyo, BioNTech, Immorna Therapeutics, Celldex, Astellas, and CNS Pharmaceuticals. Honoraria: GSK, Novocure, JAX lab for genomic research, Johnson and Johnson, Voyager therapeutics, and George Clinical. The other authors have no disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, S.L., Al Amin, M., Bari, S. et al. Immune Checkpoint Inhibitors in Geriatric Oncology. Curr Oncol Rep 26, 562–572 (2024). https://doi.org/10.1007/s11912-024-01528-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-024-01528-3

Keywords

Navigation