Skip to main content

Advertisement

Log in

Novel Clinical Trials and Approaches in the Management of Glioblastoma

  • REVIEW
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments.

Recent Findings

Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies.

Summary

Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol. 2023;25(Supplement_4):iv1-iv99

  2. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(Suppl 5):v1–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Leece R, Xu J, Ostrom QT, Chen Y, Kruchko C, Barnholtz-Sloan JS. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro Oncol. 2017;19(11):1553–64.

    PubMed  PubMed Central  Google Scholar 

  4. •• PY Wen M Weller EQ Lee BM Alexander JS Barnholtz-Sloan FP Barthel et al 2020 Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions Neuro Oncol 22 8 1073 1113. This paper published in 2020 provides an excellent review of the current management and future directions of glioblastoma at the time of publication. Topics including standar therapy, surgical management, radiotherapy, various chemotherapies, and many novel therapies are discussed. Novel therapies at the time included targeted molecular therapies, DNA damage response therapies, tumor metabolism targeting therapies, immunotherapies, and viral therapies. The paper also discusses potential improvements in clinical trial design.

  5. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    CAS  PubMed  Google Scholar 

  6. Hovey EJ, Field KM, Rosenthal MA, Barnes EH, Cher L, Nowak AK, et al. Continuing or ceasing bevacizumab beyond progression in recurrent glioblastoma: an exploratory randomized phase II trial. Neurooncol Pract. 2017;4(3):171–81.

    PubMed  PubMed Central  Google Scholar 

  7. Perry JR, Bélanger K, Mason WP, Fulton D, Kavan P, Easaw J, et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol. 2010;28(12):2051–7.

    CAS  PubMed  Google Scholar 

  8. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. 2017;377(20):1954–63.

    CAS  PubMed  Google Scholar 

  9. Shi W, Scannell Bryan M, Gilbert MR, Mehta MP, Blumenthal DT, Brown PD, et al. Investigating the effect of reirradiation or systemic therapy in patients with glioblastoma after tumor progression: a secondary analysis of NRG oncology/radiation therapy oncology group trial 0525. Int J Radiat Oncol Biol Phys. 2018;100(1):38–44.

    PubMed  Google Scholar 

  10. Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, et al. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(11):1537–70.

    PubMed  Google Scholar 

  11. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

  12. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48(7):768–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev. 2019;80:101896.

    PubMed  Google Scholar 

  18. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res. 2013;19(4):764–72.

    CAS  PubMed  Google Scholar 

  19. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A. 1994;91(16):7727–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.

    CAS  PubMed  Google Scholar 

  21. van den Bent M, Gan HK, Lassman AB, Kumthekar P, Merrell R, Butowski N, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol. 2017;80(6):1209–17.

    PubMed  PubMed Central  Google Scholar 

  22. Van Den Bent M, Eoli M, Sepulveda JM, Smits M, Walenkamp A, Frenel JS, et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 2020;22(5):684–93.

    PubMed  Google Scholar 

  23. Reardon DA, Lassman AB, van den Bent M, Kumthekar P, Merrell R, Scott AM, et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro Oncol. 2017;19(7):965–75.

    CAS  PubMed  Google Scholar 

  24. Lim Y, Yoo J, Kim MS, Hur M, Lee EH, Hur HS, et al. GC1118, an anti-EGFR antibody with a distinct binding epitope and superior inhibitory activity against high-affinity EGFR ligands. Mol Cancer Ther. 2016;15(2):251–63.

    CAS  PubMed  Google Scholar 

  25. Choi SW, Jung HA, Cho HJ, Kim TM, Park CK, Nam DH, et al. A multicenter, phase II trial of GC1118, a novel anti-EGFR antibody, for recurrent glioblastoma patients with EGFR amplification. Cancer Med. 2023;12(15):15788–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Raizer JJ, Abrey LE, Lassman AB, Chang SM, Lamborn KR, Kuhn JG, et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol. 2010;12(1):95–103.

    CAS  PubMed  Google Scholar 

  27. Doherty L, Gigas DC, Kesari S, Drappatz J, Kim R, Zimmerman J, et al. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology. 2006;67(1):156–8.

    CAS  PubMed  Google Scholar 

  28. Froelich W. A new drug targeting EGFR in glioblastoma tumors. Oncology Times. 2021;43(24):21–2.

    Google Scholar 

  29. Kizilbash SH, Jaeckle KA, Mrugala MM, Allred JB, Safgren SL, Lammers AA, et al. First-in-human phase 1 trial of the safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of WSD0922-Fu: initial report from dose escalation cohort. J Clin Oncol. 2023;41(16_suppl):3109-.

  30. Nakajima N, Nobusawa S, Nakata S, Nakada M, Yamazaki T, Matsumura N, et al. BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: a histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol. 2018;28(5):663–73.

    CAS  PubMed  Google Scholar 

  31. Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol. 2013;37(5):685–98.

    PubMed  PubMed Central  Google Scholar 

  32. Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart AC, et al. BRAF inhibition in BRAF(V600)-mutant gliomas: results from the VE-BASKET study. J Clin Oncol. 2018;36(35):3477–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schreck K, Strowd R, Nabors LB, Ellingson B, Fisher J, Desideri S, et al. CTNI-60. Preliminary results of binimetinib and encorafenib in adults with recurrent BRAF V600E-mutated high-grade glioma. Neuro Oncol 2022;24(Supplement_7):vii86-vii

  34. Bouffet E, Hansford JR, Garrè ML, Hara J, Plant-Fox A, Aerts I, et al. Dabrafenib plus trametinib in pediatric glioma with BRAF V600 mutations. N Engl J Med. 2023;389(12):1108–20.

    CAS  PubMed  Google Scholar 

  35. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos F, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53–64.

    CAS  PubMed  Google Scholar 

  36. Winstead E. Dabrafenib–trametinib combination approved for solid tumors with BRAF mutations [internet]. National Cancer Institute Cancer Currents Blog 2022

  37. Chen C, Zhu S, Zhang X, Zhou T, Gu J, Xu Y, et al. Targeting the synthetic vulnerability of PTEN-deficient glioblastoma cells with MCL1 inhibitors. Mol Cancer Ther. 2020;19(10):2001–11.

    CAS  PubMed  Google Scholar 

  38. Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23(23):5294–304.

    CAS  PubMed  Google Scholar 

  39. Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs. 2005;23(4):357–61.

    CAS  PubMed  Google Scholar 

  40. Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, et al. A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro Oncol. 2014;17(9):1261–9.

    PubMed  PubMed Central  Google Scholar 

  41. Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJB, et al. Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res. 2016;22(19):4797–806.

    CAS  PubMed  Google Scholar 

  42. Wen PY, Groot JFd, Battiste J, Goldlust SA, Garner JS, Friend J, et al. Paxalisib in patients with newly diagnosed glioblastoma with unmethylated MGMT promoter status: final phase 2 study results. J Clin Oncol. 2022;40(16_suppl):2047-

  43. Manalac T. Kazia’s star asset suffers surprise letdown in global glioblastoma study BioSpace 2022 [Available from: https://www.biospace.com/article/kazia-s-paxalisib-disappoints-in-global-glioblastoma-study/. Accessed 2 Aug 2022

  44. Bayer M. Kazia dropped from global umbrella trial to treat aggressive form of brain cancer Fierce Biotech 2022 [Available from: https://www.fiercebiotech.com/clinical-data/kazia-dropped-global-clinical-relay-race-treat-aggressive-form-brain-cancer. Accessed 1 Aug 2022.

  45. Papavassiliou KA, Papavassiliou AG. The bumpy road towards mTOR inhibition in glioblastoma: quo vadis? Biomedicines. 2021;9(12).  https://doi.org/10.3390/biomedicines9121809

  46. Gousias K, Theocharous T, Simon M. Mechanisms of cell cycle arrest and apoptosis in glioblastoma. Biomedicines. 2022;10(3):564

  47. Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, et al. Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol. 2018;140(2):477–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee EQ, Trippa L, Fell G, Rahman R, Arrillaga-Romany I, Touat M, et al. Preliminary results of the abemaciclib arm in the Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): a phase II platform trial using Bayesian adaptive randomization. J Clin Oncol 2021;39(15_suppl):2014-

  49. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.

    CAS  PubMed  Google Scholar 

  50. Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14(11):1131–8.

    CAS  PubMed  Google Scholar 

  51. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sandmann T, Bourgon R, Garcia J, Li C, Cloughesy T, Chinot OL, et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol. 2015;33(25):2735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 2013;31(26):3212–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019;20(1):110–9.

    CAS  PubMed  Google Scholar 

  55. •• Wen P, Alexander B, Berry D, Buxton M, Cavenee W, Colman H, et al. CTNI-85. GBM agile platform trial for newly diagnosed and recurrent GBM: results of first experimental arm, regorafenib. Neuro-Oncology. 2023;25(Supplement_5):v97-v8. This paper discussess the GBM Adaptive Global Innovative Learning Envrionment (GBM AGILE) trial, a novel trial designed to efficiency identify effective therapies in glioblastoma.

  56. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    CAS  PubMed  Google Scholar 

  57. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    CAS  PubMed  Google Scholar 

  58. Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601.

    PubMed  PubMed Central  Google Scholar 

  59. Sim HW, Galanis E, Khasraw M. PARP inhibitors in glioma: a review of therapeutic opportunities. Cancers (Basel). 2022;14(4):1003

  60. Ueno S, Sudo T, Hirasawa A. ATM: Functions of ATM kinase and its relevance to hereditary tumors. Int J Mol Sci. 2022;23(1):523

  61. Sim HW, McDonald KL, Lwin Z, Barnes EH, Rosenthal M, Foote MC, et al. A randomized phase II trial of veliparib, radiotherapy, and temozolomide in patients with unmethylated MGMT glioblastoma: the VERTU study. Neuro Oncol. 2021;23(10):1736–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.

    CAS  PubMed  Google Scholar 

  63. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    PubMed  PubMed Central  Google Scholar 

  64. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    CAS  PubMed  Google Scholar 

  66. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Sener U, Ruff MW, Campian JL. Immunotherapy in glioblastoma: current approaches and future perspectives. Int J Mol Sci. 2022;23(13):7046. This paper published in 2022 provides a comprehensive review of immunotherapy approaches previously and currently undergoing study in the setting of glioblastoma, addressing significant clinical trials and emphasizing molecular informed approaches to therapy.

  68. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Caccese M, Indraccolo S, Zagonel V, Lombardi G. PD-1/PD-L1 immune-checkpoint inhibitors in glioblastoma: a concise review. Crit Rev Oncol Hematol. 2019;135:128–34.

    PubMed  Google Scholar 

  70. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):1003–10.

    PubMed  Google Scholar 

  71. Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol. 2023;25(1):123–34.

    CAS  PubMed  Google Scholar 

  72. Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022;24(11):1935–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res. 2018;24(17):4175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. • Chuntova P, Chow F, Watchmaker PB, Galvez M, Heimberger AB, Newell EW, et al. Unique challenges for glioblastoma immunotherapy-discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro Oncol. 2021;23(3):356–75 (This report, derived from an expert meeting at the 2019 SNO Immuno-Oncology Think Tank, reviews special considerations of the utility of immunotherapy in glioblastoma, incorporting topics such as tumor microenvrionment, myeloid cells, T-cell dysfunction, cellular engineering and translation aspects of challenges unique to patients with primary brain tumors.).

  75. Grujic SD, O’Sullivan DD, Wehrmacher WH. Organizational control of hospital infrastructure determines the quality of care. Qual Assur Util Rev. 1989;4(1):19–24.

    CAS  PubMed  Google Scholar 

  76. Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 2016;18(2):195–205.

    CAS  PubMed  Google Scholar 

  77. Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100–9.

    CAS  PubMed  Google Scholar 

  78. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18(5):379–401.

    CAS  PubMed  Google Scholar 

  79. Lee EQ. Immune checkpoint inhibitors in GBM. J Neurooncol. 2021;155(1):1–11.

    CAS  PubMed  Google Scholar 

  80. Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24(9):1459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nayak L, Molinaro AM, Peters K, Clarke JL, Jordan JT, de Groot J, et al. Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clin Cancer Res. 2021;27(4):1048–57.

    CAS  PubMed  Google Scholar 

  82. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25(3):470–6.

    CAS  PubMed  Google Scholar 

  84. Schumacher TN, Kesmir C, van Buuren MM. Biomarkers in cancer immunotherapy. Cancer Cell. 2015;27(1):12–4.

    CAS  PubMed  Google Scholar 

  85. Chan TA, Wolchok JD, Snyder A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2015;373(20):1984.

    CAS  PubMed  Google Scholar 

  86. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.

    CAS  PubMed  Google Scholar 

  87. Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. 2020;580(7804):517–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wilcox JA, Ramakrishna R, Magge R. Immunotherapy in glioblastoma. World Neurosurg. 2018;116:518–28.

    PubMed  Google Scholar 

  90. De Jager R, Guinan P, Lamm D, Khanna O, Brosman S, De Kernion J, et al. Long-term complete remission in bladder carcinoma in situ with intravesical TICE bacillus Calmette Guerin. Overview analysis of six phase II clinical trials. Urology. 1991;38(6):507–13.

    PubMed  Google Scholar 

  91. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    CAS  PubMed  Google Scholar 

  92. Chesney JA, Ribas A, Long GV, Kirkwood JM, Dummer R, Puzanov I, et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J Clin Oncol. 2023;41(3):528–40.

    CAS  PubMed  Google Scholar 

  93. •• Neth BJ, Webb MJ, Parney IF, Sener UT. The current status, challenges, and future potential of therapeutic vaccination in glioblastoma. Pharmaceutics. 2023;15(4):1134. This paper published in 2023 provides a comprehensive review of the current status, challenges and future directions of vaccine therapies in glioblastoma.

  94. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.

    CAS  PubMed  Google Scholar 

  95. Binder DC, Ladomersky E, Lenzen A, Zhai L, Lauing KL, Otto-Meyer SD, et al. Lessons learned from rindopepimut treatment in patients with EGFRvIII-expressing glioblastoma. Transl Cancer Res. 2018;7(Suppl 4):S510–3.

    CAS  PubMed  Google Scholar 

  96. Fenstermaker RA, Ciesielski MJ, Qiu J, Yang N, Frank CL, Lee KP, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Spira A, Hansen AR, Harb WA, Curtis KK, Koga-Yamakawa E, Origuchi M, et al. Multicenter, open-label, phase I study of DSP-7888 dosing emulsion in patients with advanced malignancies. Target Oncol. 2021;16(4):461–9.

    PubMed  PubMed Central  Google Scholar 

  98. Migliorini D, Dutoit V, Allard M, Grandjean Hallez N, Marinari E, Widmer V, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol. 2019;21(7):923–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao T, Li C, Ge H, Lin Y, Kang D. Glioblastoma vaccine tumor therapy research progress. Chin Neurosurg J. 2022;8(1):2.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Preusser M, van den Bent MJ. Autologous tumor lysate-loaded dendritic cell vaccination (DCVax-L) in glioblastoma: breakthrough or fata morgana? Neuro Oncol. 2023;25(4):631–4.

    PubMed  Google Scholar 

  103. Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9(1):112–21.

    PubMed  Google Scholar 

  104. Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25(19):5799–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Buchroithner J, Erhart F, Pichler J, Widhalm G, Preusser M, Stockhammer G, et al. Audencel immunotherapy based on dendritic cells has no effect on overall and progression-free survival in newly diagnosed glioblastoma: a phase II randomized trial. Cancers (Basel). 2018;10(10):372

  106. Cho DY, Yang WK, Lee HC, Hsu DM, Lin HL, Lin SZ, et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg. 2012;77(5–6):736–44.

    PubMed  Google Scholar 

  107. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565(7738):240–5.

    CAS  PubMed  Google Scholar 

  108. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9.

    CAS  PubMed  Google Scholar 

  109. Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol. 2017;19(8):1047–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252(5007):854–6.

    CAS  PubMed  Google Scholar 

  111. •• Webb MJ, Sener U, Vile RG. Current status and challenges of oncolytic virotherapy for the treatment of glioblastoma. Pharmaceuticals (Basel). 2023;16(6):793. This paper published in 2023 provides a comprehensive review of the current status and challenges of oncolytic viral therapy as therapy for glioblastoma.

  112. Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2012;19(4):238–46.

    CAS  PubMed  Google Scholar 

  113. Patel DM, Foreman PM, Nabors LB, Riley KO, Gillespie GY, Markert JM. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev. 2016;27(2):69–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wohlfahrt ME, Beard BC, Lieber A, Kiem HP. A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res. 2007;67(18):8783–90.

    CAS  PubMed  Google Scholar 

  115. Barrett JA, Cai H, Miao J, Khare PD, Gonzalez P, Dalsing-Hernandez J, et al. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System(®) (RTS(®)) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 2018;25(5–6):106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fyfe JA, Keller PM, Furman PA, Miller RL, Elion GB. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem. 1978;253(24):8721–7.

    CAS  PubMed  Google Scholar 

  117. Eastham JA, Chen SH, Sehgal I, Yang G, Timme TL, Hall SJ, et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Hum Gene Ther. 1996;7(4):515–23.

    CAS  PubMed  Google Scholar 

  118. Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 2016;18(8):1137–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ji N, Weng D, Liu C, Gu Z, Chen S, Guo Y, et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget. 2016;7(4):4369–78.

    PubMed  Google Scholar 

  120. Chiocca EA, Gelb AB, Chen CC, Rao G, Reardon DA, Wen PY, et al. Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: an open-label, multi-institutional phase I trial. Neuro Oncol. 2022;24(6):951–63.

    CAS  PubMed  Google Scholar 

  121. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36(14):1419–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun. 2022;13(1):4119.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28(8):1630–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A. 2000;97(12):6803–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cloughesy TF, Petrecca K, Walbert T, Butowski N, Salacz M, Perry J, et al. Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol. 2020;6(12):1939–46.

    PubMed  Google Scholar 

  127. Mihelson N, McGavern DB. Viral control of glioblastoma. Viruses. 2021;13(7):1264

  128. Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, et al. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017;214(10):2843–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhu Z, Mesci P, Bernatchez JA, Gimple RC, Wang X, Schafer ST, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin α(v)β(5) axis. Cell Stem Cell. 2020;26(2):187-204.e10.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Nair S, Mazzoccoli L, Jash A, Govero J, Bais SS, Hu T, et al. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight. 2021;6(1):e144619

  131. Collins SA, Shah AH, Ostertag D, Kasahara N, Jolly DJ. Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer. Expert Opin Biol Ther. 2021;21(9):1199–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Friedmann-Morvinski D. Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog. 2014;19(5):327–36.

    PubMed  Google Scholar 

  133. Evgin L, Vile RG. Parking CAR T cells in tumours: oncolytic viruses as valets or vandals? Cancers (Basel). 2021;13(5):1106

  134. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.

    PubMed  PubMed Central  Google Scholar 

  135. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 2018;20(11):1429–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T cell-based immunotherapy for the treatment of glioblastoma. Front Neurosci. 2021;15:662064.

    PubMed  PubMed Central  Google Scholar 

  140. Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother. 2019;42(4):126–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399):eaaa0984

  142. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Mineo JF, Bordron A, Baroncini M, Maurage CA, Ramirez C, Siminski RM, et al. Low HER2-expressing glioblastomas are more often secondary to anaplastic transformation of low-grade glioma. J Neurooncol. 2007;85(3):281–7.

    PubMed  Google Scholar 

  144. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101.

    PubMed  PubMed Central  Google Scholar 

  145. Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5(7):953–62.

    CAS  PubMed  Google Scholar 

  146. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Collins M, Ling V, Carreno BM. The B7 family of immune-regulatory ligands. Genome Biol. 2005;6(6):223.

    PubMed  PubMed Central  Google Scholar 

  148. Kontos F, Michelakos T, Kurokawa T, Sadagopan A, Schwab JH, Ferrone CR, et al. B7–H3: an attractive target for antibody-based immunotherapy. Clin Cancer Res. 2021;27(5):1227–35.

    CAS  PubMed  Google Scholar 

  149. Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting B7–H3 (CD276) for human cancer immunotherapy. Clin Cancer Res. 2016;22(14):3425–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, et al. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell. 2017;31(4):501-15.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tang X, Zhao S, Zhang Y, Wang Y, Zhang Z, Yang M, et al. B7–H3 as a Novel CAR-T therapeutic target for glioblastoma. Mol Ther Oncolytics. 2019;14:279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Xiong L, Edwards CK 3rd, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci. 2014;15(10):17411–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020;10:1000.

    PubMed  PubMed Central  Google Scholar 

  154. Golinelli G, Grisendi G, Prapa M, Bestagno M, Spano C, Rossignoli F, et al. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther. 2020;27(7–8):558–70.

    CAS  PubMed  Google Scholar 

  155. Prapa M, Caldrer S, Spano C, Bestagno M, Golinelli G, Grisendi G, et al. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget. 2015;6(28):24884–94.

    PubMed  PubMed Central  Google Scholar 

  156. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M, Haile S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M(+) diffuse midline gliomas. Nat Med. 2018;24(5):572–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 1993;264(2 Pt 1):C361–9.

    CAS  PubMed  Google Scholar 

  158. Lyons SA, O’Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia. 2002;39(2):162–73.

    PubMed  Google Scholar 

  159. Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med. 2020;12(533):eaaw2672

  160. Grant SJ, Grimshaw AA, Silberstein J, Murdaugh D, Wildes TM, Rosko AE, et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2022;28(6):294–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Garcia Borrega J, Gödel P, Rüger MA, Onur ÖA, Shimabukuro-Vornhagen A, Kochanek M, et al. In the eye of the storm: immune-mediated toxicities associated with CAR-T cell therapy. Hemasphere. 2019;3(2):e191.

    PubMed  PubMed Central  Google Scholar 

  162. Mackall CL, Miklos DB. CNS endothelial cell activation emerges as a driver of CAR T cell-associated neurotoxicity. Cancer Discov. 2017;7(12):1371–3.

    CAS  PubMed  Google Scholar 

  163. Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res. 2018;6:4.

    PubMed  PubMed Central  Google Scholar 

  164. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002;2(2):85–95.

    CAS  PubMed  Google Scholar 

  166. Jin L, Tao H, Karachi A, Long Y, Hou AY, Na M, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun. 2019;10(1):4016.

    PubMed  PubMed Central  Google Scholar 

  167. Juillerat A, Marechal A, Filhol JM, Valogne Y, Valton J, Duclert A, et al. An oxygen sensitive self-decision making engineered CAR T-cell. Sci Rep. 2017;7:39833.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 2016;108(5)

  169. Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, Wels WS, et al. Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res. 2013;73(6):1892–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, et al. Applications of focused ultrasound for the treatment of glioblastoma: a new frontier. Cancers (Basel). 2022;14(19):4920

  171. Elhelf IAS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: the fundamentals, clinical applications and research trends. Diagn Interv Imaging. 2018;99(6):349–59.

    PubMed  Google Scholar 

  172. Fomenko A, Lozano AM. Neuromodulation and ablation with focused ultrasound - toward the future of noninvasive brain therapy. Neural Regen Res. 2019;14(9):1509–10.

    PubMed  PubMed Central  Google Scholar 

  173. • Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol. 2022;157(2):237–47 (This paper, published in 2022, reviews outcomes of the 2021 workshop sponsored by the Focused Ultrasound Foundation to discuss the landscape of focused ultrasound therapy as a new therapy for treating glioblastoma).

  174. Park SH, Kim MJ, Jung HH, Chang WS, Choi HS, Rachmilevitch I, et al. One-year outcome of multiple blood-brain barrier disruptions with temozolomide for the treatment of glioblastoma. Front Oncol. 2020;10:1663.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep. 2019;9(1):321.

    PubMed  PubMed Central  Google Scholar 

  176. D’Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, et al. Sonodynamic therapy for the treatment of intracranial gliomas. J Clin Med. 2021;10(5):1101

  177. Schneider CS, Woodworth GF, Vujaskovic Z, Mishra MV. Radiosensitization of high-grade gliomas through induced hyperthermia: review of clinical experience and the potential role of MR-guided focused ultrasound. Radiother Oncol. 2020;142:43–51.

    CAS  PubMed  Google Scholar 

  178. Lu G, Wang X, Li F, Wang S, Zhao J, Wang J, et al. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat Commun. 2022;13(1):4214.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Noorani I, de la Rosa J. Breaking barriers for glioblastoma with a path to enhanced drug delivery. Nat Commun. 2023;14(1):5909.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Cai Q, Li X, Xiong H, Fan H, Gao X, Vemireddy V, et al. Optical blood-brain-tumor barrier modulation expands therapeutic options for glioblastoma treatment. Nat Commun. 2023;14(1):4934.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Malouff TD, Peterson JL, Mahajan A, Trifiletti DM. Carbon ion radiotherapy in the treatment of gliomas: a review. J Neurooncol. 2019;145(2):191–9.

    PubMed  Google Scholar 

  182. Suzuki M, Kase Y, Kanai T, Ando K. Correlation between cell death and induction of non-rejoining PCC breaks by carbon-ion beams. Adv Space Res. 1998;22(4):561–8.

    CAS  PubMed  Google Scholar 

  183. Chiblak S, Campos B, Gal Z, Tang Z, Brons S, Unterberg A, et al. Photon versus proton versus carbon irradiation of glioma initiating cells. International Journal of Radiation Oncol*Biol*Phys. 2012;84(3, Supplement):S677

  184. Rackwitz T, Debus J. Clinical applications of proton and carbon ion therapy. Semin Oncol. 2019;46(3):226–32.

    CAS  PubMed  Google Scholar 

  185. Combs SE, Kieser M, Rieken S, Habermehl D, Jäkel O, Haberer T, et al. Randomized phase II study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma: the CLEOPATRA trial. BMC Cancer. 2010;10:478.

    PubMed  PubMed Central  Google Scholar 

  186. van Solinge TS, Nieland L, Chiocca EA, Broekman MLD. Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat Rev Neurol. 2022;18(4):221–36.

    PubMed  PubMed Central  Google Scholar 

  187. Cifarelli CP, Jacobson GM. Intraoperative radiotherapy in brain malignancies: indications and outcomes in primary and metastatic brain tumors. Front Oncol. 2021;11:768168.

    PubMed  PubMed Central  Google Scholar 

  188. Usychkin S, Calvo F, dos Santos MA, Samblás J, de Urbina DO, Bustos JC, et al. Intra-operative electron beam radiotherapy for newly diagnosed and recurrent malignant gliomas: feasibility and long-term outcomes. Clin Transl Oncol. 2013;15(1):33–8.

    PubMed  Google Scholar 

  189. Waters JD, Rose B, Gonda DD, Scanderbeg DJ, Russell M, Alksne JF, et al. Immediate post-operative brachytherapy prior to irradiation and temozolomide for newly diagnosed glioblastoma. J Neurooncol. 2013;113:467–77.

    CAS  PubMed  Google Scholar 

  190. Budnick HC, Richardson AM, Shiue K, Watson G, Ng SK, Le Y, et al. GammaTile for gliomas: a single-center case series. Cureus. 2021;13(11):e19390.

    PubMed  PubMed Central  Google Scholar 

  191. Brachman DG, Youssef E, Dardis CJ, Sanai N, Zabramski JM, Smith KA, et al. Resection and permanent intracranial brachytherapy using modular, biocompatible cesium-131 implants: results in 20 recurrent, previously irradiated meningiomas. J Neurosurg. 2018;131(6):1819–28.

    PubMed  Google Scholar 

  192. Brachman D, Youssef E, Dardis C, Smith K, Pinnaduwage D, Nakaji P. Surgically targeted radiation therapy: safety profile of collagen tile brachytherapy in 79 recurrent, previously irradiated intracranial neoplasms on a prospective clinical trial. Brachytherapy. 2019;18(3):S35–6.

    Google Scholar 

  193. Ferreira C, Sterling D, Reynolds M, Dusenbery K, Chen C, Alaei P. First clinical implementation of GammaTile permanent brain implants after FDA clearance. Brachytherapy. 2021;20(3):673–85.

    PubMed  Google Scholar 

  194. Greenwald J, Taube S, Yondorf MZ, Smith A, Sabbas A, Wernicke AG. Placement of (131)Cs permanent brachytherapy seeds in a large combined cavity of two resected brain metastases in one setting: case report and technical note. J Contemp Brachytherapy. 2019;11(4):356–60.

    PubMed  PubMed Central  Google Scholar 

  195. Gessler DJ, Ferreira C, Dusenbery K, Chen CC. GammaTile(®): surgically targeted radiation therapy for glioblastomas. Future Oncol. 2020;16(30):2445–55.

    CAS  PubMed  Google Scholar 

  196. Mehta AM, Sonabend AM, Bruce JN. Convection-enhanced delivery. Neurotherapeutics. 2017;14(2):358–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. D’Amico RS, Aghi MK, Vogelbaum MA, Bruce JN. Convection-enhanced drug delivery for glioblastoma: a review. J Neurooncol. 2021;151(3):415–27.

    PubMed  PubMed Central  Google Scholar 

  198. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg. 2004;100(3):472–9.

    CAS  PubMed  Google Scholar 

  199. Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery. 2011;69(6):1272–9; discussion 9–80

  200. Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg. 2017;126(1):191–200.

    PubMed  Google Scholar 

  201. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 2010;12(8):871–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Dewey RA, Morrissey G, Cowsill CM, Stone D, Bolognani F, Dodd NJ, et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med. 1999;5(11):1256–63.

    CAS  PubMed  Google Scholar 

  203. Brown MC, Holl EK, Boczkowski D, Dobrikova E, Mosaheb M, Chandramohan V, et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med 2017;9(408):eaan4220

  204. Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, et al. Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers (Basel). 2019;11(2):174

  205. Vanderbeek AM, Rahman R, Fell G, Ventz S, Chen T, Redd R, et al. The clinical trials landscape for glioblastoma: is it adequate to develop new treatments? Neuro Oncol. 2018;20(8):1034–43.

    PubMed  PubMed Central  Google Scholar 

  206. Lee EQ, Chukwueke UN, Hervey-Jumper SL, de Groot JF, Leone JP, Armstrong TS, et al. Barriers to accrual and enrollment in brain tumor trials. Neuro Oncol. 2019;21(9):1100–17.

    PubMed  PubMed Central  Google Scholar 

  207. Bates AJ, Couillard SA, Arons DF, Yung WKA, Vogelbaum M, Wen PY, et al. HOUT-15. Brain tumor patient and caregiver survey on clinical trials: identifying attitudes and barriers to patient participation. Neuro Oncol. 2017;19(Suppl 6):vi109

  208. Rahman R, Trippa L, Lee EQ, Arrillaga-Romany I, Fell G, Touat M, et al. Inaugural results of the individualized screening trial of innovative glioblastoma therapy: a phase II platform trial for newly diagnosed glioblastoma using Bayesian adaptive randomization. J Clin Oncol. 2023;41(36):5524–35.

    CAS  PubMed  Google Scholar 

  209. Ban H, Obonai T, Mishima Y, Matsumoto N, Mie M, Nakamura N. A novel humanized antibody targeting CD39 that enhances anti-tumor immunity and the efficacy of cancer immunotherapy. J Clin Oncol. 2022;40(16_suppl):e14508-e

  210. Wick W, Dettmer S, Berberich A, Kessler T, Karapanagiotou-Schenkel I, Wick A, et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro Oncol. 2019;21(1):95–105.

    CAS  PubMed  Google Scholar 

  211. Kong BY, Sim HW, Barnes EH, Nowak AK, Hovey EJ, Jeffree R, et al. Multi-Arm GlioblastoMa Australasia (MAGMA): protocol for a multiarm randomised clinical trial for people affected by glioblastoma. BMJ Open. 2022;12(9):e058107.

    PubMed  PubMed Central  Google Scholar 

  212. Dorsey ER, Kluger B, Lipset CH. The new normal in clinical trials: decentralized studies. Ann Neurol. 2020;88(5):863–6.

    CAS  PubMed  Google Scholar 

Download references

Funding

This publication was supported by Grant Number UL1 TR002377 from the National Center for Advancing Translational Sciences (NCATS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison R. Valerius.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valerius, A.R., Webb, L.M. & Sener, U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 26, 439–465 (2024). https://doi.org/10.1007/s11912-024-01519-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-024-01519-4

Keywords

Navigation