Skip to main content

Advertisement

Log in

Cerebrospinal Fluid Liquid Biopsies in the Evaluation of Adult Gliomas

  • REVIEW
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to discuss recent research regarding the biomolecules explored in liquid biopsies and their potential clinical uses for adult-type diffuse gliomas.

Recent Findings

Evaluation of tumor biomolecules via cerebrospinal fluid (CSF) is an emerging technology in neuro-oncology. Studies to date have already identified various circulating tumor DNA, extracellular vesicle, micro-messenger RNA and protein biomarkers of interest. These biomarkers show potential to assist in multiple avenues of central nervous system (CNS) tumor evaluation, including tumor differentiation and diagnosis, treatment selection, response assessment, detection of tumor progression, and prognosis. In addition, CSF liquid biopsies have the potential to better characterize tumor heterogeneity compared to conventional tissue collection and CNS imaging.

Summary

Current imaging modalities are not sufficient to establish a definitive glioma diagnosis and repeated tissue sampling via conventional biopsy is risky, therefore, there is a great need to improve non-invasive and minimally invasive sampling methods. CSF liquid biopsies represent a promising, minimally invasive adjunct to current approaches which can provide diagnostic and prognostic information as well as aid in response assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(Suppl 5):v1–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sener U, Ruff MW, Campian JL. Immunotherapy in glioblastoma: current approaches and future perspectives. Int J Mol Sci. 2022;23(13).

  5. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van den Bent MJ, Chang SM. Grade II and III Oligodendroglioma and Astrocytoma. Neurol Clin. 2018;36(3):467–84.

    Article  PubMed  Google Scholar 

  7. Dono A, Ballester LY, Primdahl D, Esquenazi Y, Bhatia A. IDH-mutant low-grade glioma: advances in molecular diagnosis, management, and future directions. Curr Oncol Rep. 2021;23(2):20.

    Article  CAS  PubMed  Google Scholar 

  8. Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer. 2022;128(1):47–58.

    Article  PubMed  Google Scholar 

  9. Gerstner ER, Batchelor TT. Imaging and response criteria in gliomas. Curr Opin Oncol. 2010;22(6):598–603.

    Article  PubMed  Google Scholar 

  10. Colman H. Adult gliomas. Continuum (Minneap Minn). 2020;26(6):1452–75.

    PubMed  Google Scholar 

  11. Zhou Q, Xue C, Ke X, Zhou J. Treatment response and prognosis evaluation in high-grade glioma: an imaging review based on MRI. J Magn Reson Imaging. 2022;56(2):325–40.

    Article  PubMed  Google Scholar 

  12. Zeng T, Xu Z, Yan J. The value of asphericity derived from T1-weighted MR in differentiating intraparenchymal ring-enhancing lesions-comparison of glioblastomas and brain abscesses. Neurol Sci. 2021;42(12):5171–5.

    Article  PubMed  Google Scholar 

  13. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel SH, Poisson LM, Brat DJ, Zhou Y, Cooper L, Snuderl M, et al. T2-FLAIR Mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res. 2017;23(20):6078–85.

    Article  CAS  PubMed  Google Scholar 

  15. Smits M. Imaging of oligodendroglioma. Br J Radiol. 2016;89(1060):20150857.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Becker AP, Sells BE, Haque SJ, Chakravarti A. Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology. Cancers (Basel). 2021;13(4).

  18. Olar A, Sulman EP. Molecular markers in low-grade glioma-toward tumor reclassification. Semin Radiat Oncol. 2015;25(3):155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang P, Xia Q, Liu L, Li S, Dong L. Current Opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy. Front Mol Biosci. 2020;7:562798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riche M, Marijon P, Amelot A, Bielle F, Mokhtari K, Chambrun MP, et al. Severity, timeline, and management of complications after stereotactic brain biopsy. J Neurosurg. 2022;136(3):867–76.

    Article  PubMed  Google Scholar 

  22. Azad TD, Bettegowda C. Longitudinal monitoring of diffuse midline glioma using liquid biopsy. Neuro Oncol. 2022;24(8):1375–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu VM, Power EA, Zhang L, Daniels DJ. Liquid biopsy for diffuse intrinsic pontine glioma: an update. J Neurosurg Pediatr. 2019;1–8.

  24. • Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–8. This review discusses the technology behind CSF liquid biopsy in brain tumors, highlighting assay requirements that optimize efficency, cost and speed. This review also addresses the clinical utility of CSF liquid biopsies, including potential diagnostic value.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Friedman JS, Hertz CAJ, Karajannis MA, Miller AM. Tapping into the genome: the role of CSF ctDNA liquid biopsy in glioma. Neurooncol Adv. 2022;4(Suppl 2):ii33–40.

    PubMed  PubMed Central  Google Scholar 

  26. Miller AM, Szalontay L, Bouvier N, Hill K, Ahmad H, Rafailov J, et al. Next-generation sequencing of cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent and young adult brain tumor patients. Neuro Oncol. 2022;24(10):1763–72.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol. 2022;34(6):705–12. This commentary review collected data that demonstrates the potential of various CSF biomarkers to represent the high heterogeneity of brain tumors.

    Article  CAS  PubMed  Google Scholar 

  28. Eibl RH, Schneemann M. Liquid biopsy and primary brain tumors. Cancers (Basel). 2021;13(21).

  29. Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist. 2021;4(1):17–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Slater JM, Shih HA. Pseudoprogression in low-grade glioma. Transl Cancer Res. 2019;8(Suppl 6):S580–4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Radiol Clin North Am. 2019;57(6):1199–216.

    Article  PubMed  Google Scholar 

  32. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sidibe I, Tensaouti F, Roques M, Cohen-Jonathan-Moyal E, Laprie A. Pseudoprogression in glioblastoma: role of metabolic and functional MRI-systematic review. Biomedicines. 2022;10(2).

  34. Nabavizadeh A, Bagley SJ, Doot RK, Ware JB, Young AJ, Ghodasara S, et al. Distinguishing progression from pseudoprogression in glioblastoma using (18)F-Fluciclovine PET. J Nucl Med. 2022.

  35. Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, et al. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors. PLoS One. 2012;7(12):e52008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics. 2017;14(2):307–20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ellingson BM, Sampson J, Achrol AS, Aghi MK, Bankiewicz K, Wang C, et al. Modified RANO, immunotherapy RANO, and standard RANO response to convection-enhanced delivery of IL4R-targeted immunotoxin MDNA55 in recurrent glioblastoma. Clin Cancer Res. 2021;27(14):3916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135(3):337–61.

    Article  CAS  PubMed  Google Scholar 

  39. •• Xiao F, Lv S, Zong Z, Wu L, Tang X, Kuang W, et al. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl Res. 2020;12(4):1379–96. This review discusses the clinical roles of the most promising CSF biomarkers, including ctDNA, miRNA, and extracelluar vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  PubMed  Google Scholar 

  41. Samuel N, Remke M, Rutka JT, Raught B, Malkin D. Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. J Neurooncol. 2014;118(2):225–38.

    Article  CAS  PubMed  Google Scholar 

  42. Kienzler JC, Zakelis R, Marbacher S, Babler S, Schwyzer L, Remonda E, et al. Changing the paradigm of intracranial hypertension in brain tumor patients: a study based on non-invasive ICP measurements. BMC Neurol. 2020;20(1):268.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pentsova EI, Shah RH, Tang J, Boire A, You D, Briggs S, et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol. 2016;34(20):2404–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Martinez-Ricarte F, Mayor R, Martinez-Saez E, Rubio-Perez C, Pineda E, Cordero E, et al. Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from cerebrospinal fluid. Clin Cancer Res. 2018;24(12):2812–9. This study demonstrated that the genomic analysis of critical genes utilized in the subclassification of diffuse gliomas was possible with high sensitivity utilizing CSF ctDNA samples, thereby indicating the potential diagnostic value of liquid biopsies.

    Article  CAS  PubMed  Google Scholar 

  45. Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018;18(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–67.

    Article  CAS  PubMed  Google Scholar 

  47. Dossani RH, Kalakoti P, Thakur JD, Nanda A. Ayub Khan Ommaya (1930–2008): Legacy and contributions to neurosurgery. Neurosurgery. 2017;80(2):324–30.

    Article  PubMed  Google Scholar 

  48. Sener U, Kumthekar P, Boire A. Advances in the diagnosis, evaluation, and management of leptomeningeal disease. Neuro-Oncol Adv. 2021;3(Supplement_5):v86–95.

    Article  Google Scholar 

  49. Gao F, Cui Y, Jiang H, Sui D, Wang Y, Jiang Z, et al. Circulating tumor cell is a common property of brain glioma and promotes the monitoring system. Oncotarget. 2016;7(44):71330–40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Macarthur KM, Kao GD, Chandrasekaran S, Alonso-Basanta M, Chapman C, Lustig RA, et al. Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res. 2014;74(8):2152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Kang Y, Lin X, Kang D. Diagnostic value of circulating tumor DNA in molecular characterization of glioma: a meta-analysis. Medicine (Baltimore). 2020;99(33):e21196. (This meta-analysis reviewed multiple studies investigating the diagnostic value of ctDNA in detecting genetic mutations in gliomas and identified that ctDNA analysis has high specificity and moderate sensitivity in clinical application.)

    Article  CAS  PubMed  Google Scholar 

  52. De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martinez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S, et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One. 2013;8(10):e78115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leal T, Chang JE, Mehta M, Robins HI. Leptomeningeal Metastasis: Challenges in Diagnosis and Treatment. Curr Cancer Ther Rev. 2011;7(4):319–27.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol. 2010;2(6):351–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

    Article  CAS  PubMed  Google Scholar 

  57. • Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A. 2015;112(31):9704–9. This study identified various characteristics that make ctDNA analysis more valuable in brain tumors, such as tumor location.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sánchez-Herrero E, Serna-Blasco R, Robado de Lope L, González-Rumayor V, Romero A, Provencio M. Circulating tumor DNA as a cancer biomarker: an overview of biological features and factors that may impact on ctDNA analysis. Front Oncol. 2022;12:943253.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhao Y, He JY, Zou YL, Guo XS, Cui JZ, Guo L, et al. Evaluating the cerebrospinal fluid ctDNA detection by next-generation sequencing in the diagnosis of meningeal Carcinomatosis. BMC Neurol. 2019;19(1):331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol. 2001;22(5):959–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Boisselier B, Gallego Perez-Larraya J, Rossetto M, Labussiere M, Ciccarino P, Marie Y, et al. Detection of IDH1 mutation in the plasma of patients with glioma. Neurology. 2012;79(16):1693–8.

    Article  CAS  PubMed  Google Scholar 

  63. Juratli TA, Stasik S, Zolal A, Schuster C, Richter S, Daubner D, et al. TERT promoter mutation detection in cell-free tumor-derived DNA in patients with IDH wild-type glioblastomas: a pilot prospective study. Clin Cancer Res. 2018;24(21):5282–91.

    Article  CAS  PubMed  Google Scholar 

  64. Pan C, Diplas BH, Chen X, Wu Y, Xiao X, Jiang L, et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019;137(2):297–306.

    Article  CAS  PubMed  Google Scholar 

  65. Yao W, Mei C, Nan X, Hui L. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene. 2016;590(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  66. Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer–a brief overview. Adv Biol Regul. 2015;57:1–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    Article  CAS  PubMed  Google Scholar 

  68. Mathupala SP, Mittal S, Guthikonda M, Sloan AE. MicroRNA and brain tumors: a cause and a cure? DNA Cell Biol. 2007;26(5):301–10.

    Article  CAS  PubMed  Google Scholar 

  69. Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn. 2015;15(10):1311–23.

    Article  CAS  PubMed  Google Scholar 

  70. Akers JC, Hua W, Li H, Ramakrishnan V, Yang Z, Quan K, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017;8(40):68769–79.

    Article  PubMed  PubMed Central  Google Scholar 

  71. •• Zhou Q, Liu J, Quan J, Liu W, Tan H, Li W. MicroRNAs as potential biomarkers for the diagnosis of glioma: a systematic review and meta-analysis. Cancer Sci. 2018;109(9):2651–9. This review identified the various miRNA biomarkers that have been studied in glioma patients and reviewed the overall sensitivity and specificity of these biomarkers in the setting of a glioma diagnosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim TM, Huang W, Park R, Park PJ, Johnson MD. A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res. 2011;71(9):3387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Can Res. 2005;65(14):6029–33.

    Article  CAS  Google Scholar 

  75. Zhao X, Xiao Z, Li B, Li H, Yang B, Li T, et al. miRNA-21 may serve as a promising noninvasive marker of glioma with a high diagnostic performance: a pooled analysis of 997 patients. Ther Adv Med Oncol. 2021;13:1758835920987650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi R, Wang PY, Li XY, Chen JX, Li Y, Zhang XZ, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget. 2015;6(29):26971–81.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, Schmiegel W, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro Oncol. 2012;14(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  78. Sun G, Yan S, Shi L, Wan Z, Jiang N, Li M, et al. Decreased expression of miR-15b in human gliomas is associated with poor prognosis. Cancer Biother Radiopharm. 2015;30(4):169–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang J, Liu H, Tian L, Wang F, Han L, Zhang W, et al. miR-15b inhibits the progression of glioblastoma cells through targeting insulin-like growth factor receptor 1. Horm Cancer. 2017;8(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  80. Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, et al. MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget. 2013;4(5):665–76.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li HY, Li YM, Li Y, Shi XW, Chen H. Circulating microRNA-137 is a potential biomarker for human glioblastoma. Eur Rev Med Pharmacol Sci. 2016;20(17):3599–604.

    PubMed  Google Scholar 

  82. Tunca B, Tezcan G, Cecener G, Egeli U, Ak S, Malyer H, et al. Olea europaea leaf extract alters microRNA expression in human glioblastoma cells. J Cancer Res Clin Oncol. 2012;138(11):1831–44.

    Article  CAS  PubMed  Google Scholar 

  83. Khalil S, Fabbri E, Santangelo A, Bezzerri V, Cantù C, Di Gennaro G, et al. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget. 2016;7(19):28195–206.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, et al. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol. 2012;14(6):712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sippl C, Quiring A, Teping F, Schulz-Schaeffer W, Urbschat S, Ketter R, et al. MiRNA-181d expression correlates in tumor versus plasma of glioblastoma patients-the base of a preoperative stratification tool for local carmustine wafer use. World Neurosurg. 2022;159:e324–33.

    Article  PubMed  Google Scholar 

  86. Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Mol Med. 2016;8(3):268–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhen L, Li J, Zhang M, Yang K. MiR-10b decreases sensitivity of glioblastoma cells to radiation by targeting AKT. J Biol Res (Thessalon). 2016;23:14.

    Article  PubMed  Google Scholar 

  88. • Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol. 2012;14(6):689–700. This study determined that several miRNA biomarkers were not only of diagnostic value, but also of value in assessing longitudinal disease activity and treatment response in the CSF of glioma patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Swellam M, Ezz El Arab L, Al-Posttany AS, B. Said S. Clinical impact of circulating oncogenic MiRNA-221 and MiRNA-222 in glioblastoma multiform. J Neuro-Oncol. 2019;144(3):545–51.

    Article  CAS  Google Scholar 

  90. Drusco A, Bottoni A, Laganà A, Acunzo M, Fassan M, Cascione L, et al. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget. 2015;6(25):20829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lai Ns Wu, Dg FX, Yc L, Ss C, Zb Li, et al. Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br J Cancer. 2015;112(7):1241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ma R, Yan W, Zhang G, Lv H, Liu Z, Fang F, et al. Upregulation of miR-196b confers a poor prognosis in glioblastoma patients via inducing a proliferative phenotype. PLoS One. 2012;7(6):e38096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  94. Kirstein A, Schmid TE, Combs SE. The role of miRNA for the treatment of MGMT unmethylated glioblastoma multiforme. Cancers (Basel). 2020;12(5).

  95. Chen H, Li X, Li W, Zheng H. miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase. J Transl Med. 2015;13:69.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ge X, Pan M-H, Wang L, Li W, Jiang C, He J, et al. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 2018;9(11):1128.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jung CS, Foerch C, Schänzer A, Heck A, Plate KH, Seifert V, et al. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain. 2007;130(Pt 12):3336–41.

    Article  CAS  PubMed  Google Scholar 

  98. Szymaś J, Morkowski S, Tokarz F. Determination of the glial fibrillary acidic protein in human cerebrospinal fluid and in cyst fluid of brain tumors. Acta Neurochir (Wien). 1986;83(3–4):144–50.

    Article  PubMed  Google Scholar 

  99. Nakagawa H, Yamada M, Kanayama T, Tsuruzono K, Miyawaki Y, Tokiyoshi K, et al. Myelin basic protein in the cerebrospinal fluid of patients with brain tumors. Neurosurgery. 1994;34(5):825–33 (discussion 33).

    CAS  PubMed  Google Scholar 

  100. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peles E, Lidar Z, Simon AJ, Grossman R, Nass D, Ram Z. Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery. 2004;55(3):562–7 (discussion 7-8).

    Article  PubMed  Google Scholar 

  102. Sampath P, Weaver CE, Sungarian A, Cortez S, Alderson L, Stopa EG. Cerebrospinal fluid (vascular endothelial growth factor) and serologic (recoverin) tumor markers for malignant glioma. Cancer Control. 2004;11(3):174–80.

    Article  PubMed  Google Scholar 

  103. Yamaguchi Y, Shao Z, Sharif S, Du XY, Myles T, Merchant M, et al. Thrombin-cleaved fragments of osteopontin are overexpressed in malignant glial tumors and provide a molecular niche with survival advantage. J Biol Chem. 2013;288(5):3097–111.

    Article  CAS  PubMed  Google Scholar 

  104. Ribom D, Larsson A, Pietras K, Smits A. Growth factor analysis of low-grade glioma CSF: PDGF and VEGF are not detectable. Neurol Sci. 2003;24(2):70–3.

    Article  CAS  PubMed  Google Scholar 

  105. Li QY, Yang Y, Zhang Y, Zhang ZJ, Gong AH, Yuan ZC, et al. Nerve growth factor expression in astrocytoma and cerebrospinal fluid: a new biomarker for prognosis of astrocytoma. Chin Med J (Engl). 2011;124(14):2222–7.

    CAS  PubMed  Google Scholar 

  106. Philips N, Auler S, Hugo R, Gonzalez S. Beneficial regulation of matrix metalloproteinases for skin health. Enzyme Res. 2011;2011:427285.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Raithatha SA, Muzik H, Rewcastle NB, Johnston RN, Edwards DR, Forsyth PA. Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro Oncol. 2000;2(3):145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu L, Wu J, Ying Z, Chen B, Han A, Liang Y, et al. Astrocyte elevated gene-1 upregulates matrix metalloproteinase-9 and induces human glioma invasion. Can Res. 2010;70(9):3750–9.

    Article  CAS  Google Scholar 

  109. Friedberg MH, Glantz MJ, Klempner MS, Cole BF, Perides G. Specific matrix metalloproteinase profiles in the cerebrospinal fluid correlated with the presence of malignant astrocytomas, brain metastases, and carcinomatous meningitis. Cancer. 1998;82(5):923–30.

    Article  CAS  PubMed  Google Scholar 

  110. Wong ET, Alsop D, Lee D, Tam A, Barron L, Bloom J, et al. Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas. Cerebrospinal Fluid Research. 2008;5(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shen F, Zhang Y, Yao Y, Hua W, Zhang HS, Wu JS, et al. Proteomic analysis of cerebrospinal fluid: toward the identification of biomarkers for gliomas. Neurosurg Rev. 2014;37(3):367–80 (discussion 80).

    Article  PubMed  Google Scholar 

  112. Koper OM, Kamińska J, Sawicki K, Reszeć J, Rutkowski R, Jadeszko M, et al. Cerebrospinal fluid and serum IL-8, CCL2, and ICAM-1 concentrations in astrocytic brain tumor patients. Ir J Med Sci. 2018;187(3):767–75.

    Article  CAS  PubMed  Google Scholar 

  113. Turtoi A, Musmeci D, Naccarato AG, Scatena C, Ortenzi V, Kiss R, et al. Sparc-like protein 1 is a new marker of human glioma progression. J Proteome Res. 2012;11(10):5011–21.

    Article  CAS  PubMed  Google Scholar 

  114. Pagano A, Breuzard G, Parat F, Tchoghandjian A, Figarella-Branger D, De Bessa TC, et al. Tau regulates glioblastoma progression, 3D cell organization, growth and migration via the PI3K-AKT axis. Cancers (Basel). 2021;13(22).

  115. Li D, Zhang Q, Li L, Chen K, Yang J, Dixit D, et al. β2-Microglobulin Maintains Glioblastoma Stem Cells and Induces M2-like Polarization of Tumor-Associated Macrophages. Cancer Res. 2022;82(18):3321–34.

    Article  CAS  PubMed  Google Scholar 

  116. Harris P, Kerstetter-Fogle A, Sloan A, Raghavan A, Hoffman H, Barnholtz-Sloan J, et al. STEM-20. The role of human beta defensins in the clonogenicity of glioblastoma multiformE. Neuro-Oncol. 2021;23(Supplement_6):vi25-vi.

    Article  Google Scholar 

  117. Zhang J, Furuta T, Sabit H, Tamai S, Jiapaer S, Dong Y, et al. Gelsolin inhibits malignant phenotype of glioblastoma and is regulated by miR-654-5p and miR-450b-5p. Cancer Sci. 2020;111(7):2413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Norton ES, Da Mesquita S, Guerrero-Cazares H. SERPINA3 in glioblastoma and Alzheimer’s disease. Aging (Albany NY). 2021;13(18):21812–3.

    Article  PubMed  Google Scholar 

  119. Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, et al. Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol. 2010;36(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  120. Kijewska M, Kocyk M, Kloss M, Stepniak K, Korwek Z, Polakowska R, et al. The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma. Oncotarget. 2017;8(10):16340–55.

    Article  PubMed  Google Scholar 

  121. Grube S, Freitag D, Kalff R, Ewald C, Walter J. Characterization of adherent primary cell lines from fresh human glioblastoma tissue, defining glial fibrillary acidic protein as a reliable marker in establishment of glioblastoma cell culture. Cancer Rep (Hoboken). 2021;4(2):e1324.

    Article  CAS  PubMed  Google Scholar 

  122. Yoshida J, Wakabayashi T, Okamoto S, Kimura S, Washizu K, Kiyosawa K, et al. Tenascin in cerebrospinal fluid is a useful biomarker for the diagnosis of brain tumour. J Neurol Neurosurg Psychiatry. 1994;57(10):1212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, et al. Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol (EJSO). 2010;36(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  124. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article  PubMed  Google Scholar 

  125. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Combarnous Y, Nguyen TMD. Cell Communications among microorganisms, plants, and animals: origin, evolution, and interplays. Int J Mol Sci. 2020;21(21).

  127. Das K, Mukherjee T, Shankar P. The role of extracellular vesicles in the pathogenesis of hematological malignancies: interaction with tumor microenvironment; a potential biomarker and targeted therapy. Biomolecules. 2023;13(6):897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pulliero A, Pergoli L, LAM S, Micale RT, Camoirano A, Bollati V, et al. Extracellular vesicles in biological fluids. A biomarker of exposure to cigarette smoke and treatment with chemopreventive drugs. J Prev Med Hyg. 2019;60(4):1327–136.

    Google Scholar 

  129. Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, et al. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis. 2023;14(4):235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. André-Grégoire G, Bidère N, Gavard J. Temozolomide affects Extracellular Vesicles Released by Glioblastoma Cells. Biochimie. 2018;155:11–5.

    Article  PubMed  Google Scholar 

  132. • Osti D, Del Bene M, Rappa G, Santos M, Matafora V, Richichi C, et al. Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin Cancer Res. 2019;25(1):266–76. This study found that glioblastoma tumors contribute to a significant portion of circulating extracellular vesicles that can be further utilized for tumor genetic analysis.

    Article  CAS  PubMed  Google Scholar 

  133. Saugstad JA, Lusardi TA, Van Keuren-Jensen KR, Phillips JI, Lind B, Harrington CA, et al. Analysis of extracellular RNA in cerebrospinal fluid. J Extracell Vesicles. 2017;6(1):1317577.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and droplet digital PCR Analysis of mutant IDH1 mRNA in Glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids. 2013;2(7):e109.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pan PC, Magge RS. Mechanisms of EGFR resistance in glioblastoma. Int J Mol Sci. 2020;21(22).

  137. Santangelo A, Imbrucè P, Gardenghi B, Belli L, Agushi R, Tamanini A, et al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J Neurooncol. 2018;136(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  138. Manterola L, Guruceaga E, Gállego Pérez-Larraya J, González-Huarriz M, Jauregui P, Tejada S, et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 2014;16(4):520–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. •• Soffietti R, Bettegowda C, Mellinghoff IK, Warren KE, Ahluwalia MS, De Groot JF, et al. Liquid biopsy in gliomas: a RANO review and proposals for clinical applications. Neuro Oncol. 2022;24(6):855–71. This review organizes research supporting the ability of ctDNA to represent the spatial and temporal heterogeneity of gliomas in CSF analysis as well as the pros of extracellular vesicles in CSF analysis. The potential clinical applications of liquid biopsies in gliomas are extensively discussed in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication was supported by Grant Number UL1 TR002377 from the National Center for Advancing Translational Sciences (NCATS).

Author information

Authors and Affiliations

Authors

Contributions

A.V. and M.W wrote the main manuscript text. N.H. assisted in the initial manuscript text. A.V. prepared figure 1and Tables 13. A.V. prepared the references. U.S and R.M. edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Allison R. Valerius.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the views of the National Institutes of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valerius, A.R., Webb, M.J., Hammad, N. et al. Cerebrospinal Fluid Liquid Biopsies in the Evaluation of Adult Gliomas. Curr Oncol Rep 26, 377–390 (2024). https://doi.org/10.1007/s11912-024-01517-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-024-01517-6

Keywords

Navigation