Skip to main content

Advertisement

Log in

Cardio-Oncology in Childhood: State of the Art

  • Cardio-oncology (JN Upshaw, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardio-oncology is an increasingly important field of cardiology that focuses on the detection, monitoring, and treatment of cardiovascular disease (CVD) occurring during and after oncological treatments. The survival rate for childhood cancer patients has dramatically increased thanks to new treatment protocols and cardiovascular (CV) sequelae represent the third most frequent cause of mortality in surviving patients. This study aims to provide a complete and updated review of all the main aspects of cardio-oncology in childhood and to highlight the critical issues.

Recent Findings

The problem of CV complications in childhood cancer survivors raises the need to make an early diagnosis of cardiotoxicity by the new imaging and laboratory techniques in order to intervene promptly and to implement pharmacological strategies and lifestyle changes to reduce or even to prevent cardiac injury. Furthermore, a stratification of CV risk, also including new predisposing factors such as the presence of some genetic mutations, is of paramount importance before undertaking oncological treatments. Besides, a systematic and personalized planning of long-term follow-up is fundamental to ensure a transition from pediatric to adult hospital and to avoid missed or late diagnosis of cardiomyopathy.

Summary

We reviewed the main risk factors for cardiotoxicity in children, both traditional and emerging ones: the mechanisms of toxicity of both old and new antineoplastic therapies, the techniques for detecting cardiac damage, and the current evidence regarding pharmacological cardioprotection. At the end, we focused our attention on the existing guidelines and strategies about the long-term follow-up of childhood cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bansal N, Blanco JG, Sharma UC, Pokharel S, Shisler S, Lipshultz SE. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev. 2020;39(1):55–68. https://doi.org/10.1007/s10555-020-09859-w.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sieswerda E, van Dalen EC, Postma A, Caron HN, Kremer LCM. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2009 (4). Art. No.: CD008011. https://doi.org/10.1002/14651858.CD008011.

  3. • Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 2015;16:e123–e136. These guidelines are the result of an international effort to harmonize existing cardiomyopathy surveillance guidelines for survivors of childhood cancer.

  4. Carver JR, Shapiro CL, Ng A, Jacobs L, Schwartz C, Virgo KS, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008.

    Article  CAS  PubMed  Google Scholar 

  5. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein M, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15(4):1544–52.

    Article  CAS  PubMed  Google Scholar 

  6. Cardinale D, Fabiani I, Cipolla CM. Cardiotoxicity of anthracyclines. Front Cardiovasc Med. 2020;7:26. https://doi.org/10.3389/fcvm.2020.00026.

  7. Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–62. https://doi.org/10.1161/CIRCULATIONAHA.105.576850.

  8. Hitawala G, Jain E, Castellanos L, et al. Pediatric chemotherapy drugs associated with cardiotoxicity. Cureus. 2021;13(11): e19658. https://doi.org/10.7759/cureus.19658.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Aminkeng F, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82:683–95. This document provides evidence-based clinical practice recommendations for genetic testing for cancer patients prior to anthracycline chemotherapy to individualize therapy and prevent cardiotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Garcia-Pavia P, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019; 140:31–41. This is the first study to examine the association between rare genetic variants in cardiomyopathy genes and the occurrence of cancer therapy-induced cardiomyopathy in adult and pediatric patients.

  11. Girolami F, Spinelli V, Passantino S, Bennati E, Calabri GB, Olivotto I, Favilli S. Hidden familial cardiomyopathies in children: role of genetic testing. Int J Cardiol. 2021;340:55–8. https://doi.org/10.1016/j.ijcard.2021.08.014.

    Article  CAS  PubMed  Google Scholar 

  12. Marstrand P, et al. Second hits in dilated cardiomyopathy. Curr Cardiol Rep. 2020;22:8.

    Article  PubMed  Google Scholar 

  13. Chang VY, Wang JJ. Pharmacogenetics of chemotherapy-induced cardiotoxicity. Curr Oncol Rep. 2018;20:52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wasielewski M, et al. Potential genetic predisposition for anthracycline-associated cardiomyopathy in families with dilated cardiomyopathy. Open Heart. 2014;1(1): 000116.

    Article  Google Scholar 

  15. van den Berg MP, et al. Familial dilated cardiomyopathy: another risk factor for anthracycline-induced cardiotoxicity? Eur J Heart Fail. 2010;12:1297–9.

    Article  PubMed  Google Scholar 

  16. Young AC, Mercer B, Perren TJ, Dodwell D. Anthracycline-induced cardiomyopathy in siblings with early breast cancer. Ann Oncol. 2011;22(7):1692. https://doi.org/10.1093/annonc/mdr272.

    Article  CAS  PubMed  Google Scholar 

  17. Franco VI, Lipshultz SE. Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young. 2015;25(Suppl. 2):107–16.

    Article  PubMed  Google Scholar 

  18. Lyon AR. et al. Diagnosis and treatment of left ventricular dysfunction and heart failure in cancer patients. e-Journal of Cardiology Practice 27/02/2019;16:40. https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-16/Diagnosis-and-treatment-of-left-ventricular-dysfunction-and-heart-failure-in-cancer-patients

  19. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68:2871–86. https://doi.org/10.1016/j.jacc.2016.08.079.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Simbre VC, Duffy SA, Dadlani GH, Miller TL, Lipshultz SE. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr Drugs. 2005;7(3):187–202. https://doi.org/10.2165/00148581-200507030-00005.

    Article  PubMed  Google Scholar 

  21. Mancilla TR, et al. Doxorubicin-induced cardiomyopathy in children. Compr Physiol. 2020;9(3):905–31. https://doi.org/10.1002/cphy.c180017.

    Article  Google Scholar 

  22. Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525–33.

    Article  CAS  PubMed  Google Scholar 

  23. Giantris A, Abdurrahman L, Hinkle A, Asselin B, Lipshultz SE. Anthracycline-induced cardiotoxicity in children and young adults. Crit Rev Oncol Hematol. 1998;27(1):53–68.

    Article  CAS  PubMed  Google Scholar 

  24. Trachtenberg BH, Landy DC, Franco VI, Henkel JM, Pearson EJ, Miller TL, Lipshultz SE. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32(3):342–53.

    Article  PubMed  Google Scholar 

  25. Lipshultz SE, Scully RE, Stevenson KE, Franco VI, Neuberg DS, Colan SD, et al. Hearts too small for body size after doxorubicin for childhood leukemia: Grinch syndrome. J Clin Oncol. 2014;32:10021 (abstr.).

    Article  Google Scholar 

  26. Armenian SH, Gelehrter SK, Chow EJ. Strategies to prevent anthracycline-related congestive heart failure in survivors of childhood cancer. Cardiol Res Pract. 2012;2012: 713294.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  CAS  PubMed  Google Scholar 

  28. Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail. 2016;9: e002661.

    Article  PubMed  PubMed Central  Google Scholar 

  29. • Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J. 2016;2016(37):2768–801. This paper contains the latest European Guidelines on cardio-oncology.

  30. Cardinale D, Cipolla CM. Chemotherapy-induced cardiotoxicity: importance of early detection. Expert Rev Cardiovasc Ther. 2016;14:1297–9. https://doi.org/10.1080/14779072.2016.1239528.

    Article  CAS  PubMed  Google Scholar 

  31. Cardinale D, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pareek N, Cevallos J, Moliner P, Shah M, Tan LL, Chambers V, Baksi AJ, Khattar RS, Sharma R, Rosen SD, Lyon AR. Activity and outcomes of a cardio-oncology service in the United Kingdom-a five-year experience. Eur J Heart Fail. 2018;20:721–31.

    Article  Google Scholar 

  33. Lipshultz SE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–9. https://doi.org/10.1200/JCO.2010.30.3404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Germanakis I, Kalmanti M, Parthenakis F, Nikitovic D, Stiakaki E, Patrianakos A, et al. Correlation of plasma N-terminal pro-brain natriuretic peptide levels with left ventricle mass in children treated with anthracyclines. Int J Cardiol. 2006;108(2):212–5. https://doi.org/10.1016/j.ijcard.2005.05.006.

    Article  PubMed  Google Scholar 

  35. Ekstein S, Nir A, Rein AJ, Perles Z, Bar-Oz B, Salpeter L, et al. N-terminal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in children. J Pediatr Hematol Oncol. 2007;29(7):440–4. https://doi.org/10.1097/MPH.0b013e3180640d42.

    Article  CAS  PubMed  Google Scholar 

  36. Wolf CM, Reiner B, Kuhn A, Hager A, et al. Subclinical cardiac dysfunction in childhood cancer survivors on 10-years follow up correlates with cumulative anthracycline dose and is best detected by cardiopulmonary exercise testing, circulating serum biomarker, speckle tracking echocardiography and tissue Doppler imaging. Front Pediatr. 2020;8:123. https://doi.org/10.3389/fped.2020.00123.

  37. Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol. 2013;10:697–710. https://doi.org/10.1038/nrclinonc.2013.195.

    Article  CAS  PubMed  Google Scholar 

  38. Bagnes C, Panchuk PN, Recondo G. Antineoplastic chemotherapy induced QTc prolongation. Curr Drug Saf. 2010;5:93–6.

    Article  CAS  PubMed  Google Scholar 

  39. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pratila MG, Steinherz LJ, Pratilas V. Sick sinus syndrome in a teenager treated with idarubicin. J Cardiothorac Vasc Anesth. 1993;7:125–6.

    Article  CAS  PubMed  Google Scholar 

  41. Heiderneich PA, Hancock SL, Lee BK, Mariscal CS, Schnittger I. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol. 2003;42:743–9.

    Article  Google Scholar 

  42. Mulrooney DA, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339: b4606. https://doi.org/10.1136/bmj.b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shapiro CL. Cancer survivorship. N Engl J Med. 2018;379(25):2438–50.

    Article  PubMed  Google Scholar 

  44. Shapiro CL, Recht A. Side effects of adjuvant treatment of breast cancer. N Engl J Med. 2001;344(26):1997–2008.

    Article  CAS  PubMed  Google Scholar 

  45. • Lipshultz SE, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions. A scientific statement from the American Heart Association. Circulation. 2013; 128:1927–1995. https://doi.org/10.1161/CIR.0b013e3182a88099. This scientific statement approved by the American Heart Association and the American Academy of Pediatrics is a very comprehensive document summarizing a large amount of evidence in the field of cardiotoxicity in children, adolescents, and young adults.

  46. Fajardo LF, Eltringham JR, Steward JR. Combined cardiotoxicity of adriamycin and x-radiation. Lab Invest. 1976;34(1):86–96.

    CAS  PubMed  Google Scholar 

  47. Saiki H, Moulay G, Guenzel AJ, Liu W, Decklever TD, Classic KL, Pham L, Chen HH, Burnett JC, Russell SJ, Redfield MM. Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2017;313(2):H392–407.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heidenreich PA, Schnittger I, Strauss HW, Vagelos RH, Lee BK, Mariscal CS, Tate DJ, Horning SJ, Hoppe RT, Hancock SL. Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. J Clin Oncol. 2007;25(1):43–9.

    Article  PubMed  Google Scholar 

  49. Tschope C, Van Linthout S. New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2014;11(4):436–44.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huang YJ, Harrison A, Sarkar V, Rassiah-Szegedi P, Zhao H, Szegedi M, Huang L, Wilson B, Gaffney DK, Salter BJ. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging. Adv Radiat Oncol. 2016;1(2):106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Landy DC, Miller TL, Lipsitz SR, et al. Cranial irradiation as an additional risk factor for anthracycline cardiotoxicity in childhood cancer survivors: an analysis from the cardiac risk factors in childhood cancer survivors study. Pediatr Cardiol. 2013;34:826–34.

    Article  PubMed  Google Scholar 

  52. Illidge T, et al. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol. 2014;89:49–58.

    Article  Google Scholar 

  53. Gunturk EE, Yucel B, Gunturk I, Yazici C, Yay A, Kose K. The effects of N-acetylcysteine on cisplatin induced cardiotoxicity. Bratisl Lek Listy. 2019;120(6):423–8. https://doi.org/10.4149/BLL_2019_068.

    Article  CAS  PubMed  Google Scholar 

  54. Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: old drug with a new vision. Life Sci. 2019;2(18):112–31. https://doi.org/10.1016/j.lfs.2018.12.018.

    Article  CAS  Google Scholar 

  55. Hermans C, et al. Pericarditis induced by high-dose cytosine arabinoside chemotherapy. Ann Hemat. 1997;75:55–7. https://doi.org/10.1007/s002770050312.

    Article  CAS  Google Scholar 

  56. Yang X, et al. Pericarditis associated with cytarabine therapy for acute myelocytic leukemia: a case report. Eur J Clin Pharmacol. 2018;74(2):181–2.

    Article  CAS  PubMed  Google Scholar 

  57. Dong T, et al. Cytarabine-induced pericarditis confirmed using cardiac MRI: a case report. Echocardiography. 2021;38:1446–9.

    PubMed  Google Scholar 

  58. Fulbright JM. Review of cardiotoxicity in pediatric cancer patients: during and after therapy. Cardiol Res Pract. 2011;2011: 942090. https://doi.org/10.4061/2011/942090.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kaczmarska A, et al. The use of inhibitors of tyrosine kinase in paediatric haemato-oncology—when and why? Int J Mol Sci. 2021;22:12089. https://doi.org/10.3390/ijms222112089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leong D, Aghel N, Hillis C, et al. Tyrosine kinase inhibitors in chronic myeloid leukaemia and emergent cardiovascular disease. Heart. 2021;107:667–73.

    Article  CAS  PubMed  Google Scholar 

  61. Fraley C, Milgrom SA, Kondapalli L, Taylor MRG, Mestroni L, Miyamoto SD. Mechanisms and insights for the development of heart failure associated with cancer therapy. Children. 2021;8:829. https://doi.org/10.3390/children8090829.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Burstein DS, Maude S, Grupp S, Griffis H, Rossano J, Lin K. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24:1590–5.

    Article  PubMed  Google Scholar 

  63. Ganatra S, et al. Chimeric Antigen Receptor T-Cell Therapy for cancer and heart. JACC Counc Perspect JACC. 2019;74:3153–63.

    CAS  Google Scholar 

  64. • Pudil R, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020;22:1966–83. https://doi.org/10.1002/ejhf.2017. This is the latest European Society of Cardiology position paper on the role of cardiac biomarkers in the management of cancer patients.

    Article  CAS  PubMed  Google Scholar 

  65. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. Cancer J Clin. 2016;66:309–25. https://doi.org/10.3322/caac.21341.

    Article  Google Scholar 

  66. Cardinale D, Sandri MT. Detection and monitoring of cardiotoxicity by using biomarkers: pros and cons. Remarks on the international colloquium on cardioncology. Progr Pediatr Cardiol. 2015;39:77–84.

    Article  Google Scholar 

  67. • Celutkiene J, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J of Heart Failure. 2020;22:1504–24. https://doi.org/10.1002/ejhf.1957. This is the latest European Society of Cardiology position paper on the role of cardiovascular imaging in the management of cancer patients.

    Article  CAS  Google Scholar 

  68. • Plana JC, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging.2014; 15: 1063–1093. https://doi.org/10.1093/ehjci/jeu192. This document derives from the collaboration between the American and the European Society of Cardiovascular Imaging and analyzes the role of the different imaging techniques in the management of adult cancer patients.

  69. Plana JC, et al. Multi-modality imaging in the assessment of cardiovascular toxicity in the cancer patient. JACC Cardiovasc Imaging. 2018;11(8):1173–86. https://doi.org/10.1016/j.jcmg.2018.06.003.

  70. Mawad W, Friedberg MK. The continuing challenge of evaluating diastolic function by echocardiography in children: developing concepts and newer modalities. Curr Opin Cardiol. 2017;32:93–100. https://doi.org/10.1097/HCO.0000000000000346.

    Article  PubMed  Google Scholar 

  71. Toro-Salaazar OH, Gillan E, O’Loughlin MT, Burke GS, Ferranti J, Stainsby J, Liang B, Mzur W, Raman SV, Hor KN. Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging. 2013;6:873–80.

    Article  Google Scholar 

  72. Tham EB, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48.

    Article  PubMed  PubMed Central  Google Scholar 

  73. de Souza F, et al. Assessment of cardiotoxicity of cancer chemotherapy: the value of cardiac MR imaging. Magn Reson Imaging Clin N Am. 2019;27:533–44.

    Article  Google Scholar 

  74. Parashar A, Hundley WG. The role of cardiovascular magnetic resonance for surveillance of cardiac performance upon receipt of potentially cardiotoxic cancer therapeutics. Curr Cardiol Rep. 2018;20:142.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cau R, et al. Early diagnosis of chemotherapy-induced cardiotoxicity of cardiac MRI. Eur J Radiol. 2020;130: 109158.

    Article  PubMed  Google Scholar 

  76. • Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54. It is one of the first researches demonstrating the usefulness of biomarkers in predicting cardiac injury after chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  77. Skovgaard D, Hasbak P, Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS ONE. 2014;9: e96736.

    Article  PubMed  PubMed Central  Google Scholar 

  78. De Iuliis F, Salerno G, Taglieri L, De Biase L, Lanza R, Cardelli P, Scarpa S. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients. Tumour Biol. 2016;37:3379–87.

    Article  PubMed  Google Scholar 

  79. Michel L, et al. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: a meta-analysis. Eur J Heart Fail. 2020;22:350–61.

    Article  CAS  PubMed  Google Scholar 

  80. Mavinkurve-Groothuis AM, Groot-Loonen J, Bellersen L, Pourier MS, Feuth T, Bökkerink JP, et al. Abnormal NT-pro-BNP levels in asymptomatic long-term survivors of childhood cancer treated with anthracyclines. Pediatr Blood Cancer. 2009;52(5):631–6. https://doi.org/10.1002/pbc.21913.

    Article  PubMed  Google Scholar 

  81. Mladosievicova B, Urbanova D, Radvanska E, Slavkovsky P, Simkova I. Role of NT-proBNP in detection of myocardial damage in childhood leukemia survivors treated with and without anthracyclines. J Exp Clin Cancer Res. 2012;31:86. https://doi.org/10.1186/1756-9966-31-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leerink JM, et al. Biomarkers to diagnose ventricular dysfunction in childhood cancer survivors: a systematic review. Heart. 2018;1–7. https://doi.org/10.1136/heartjnl-2018-313634.

  83. Leger KJ, Leonard D, Nielson D, de Lemos JA, Mammen PP, Winick NJ. Circulating microRNAs: potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. J Am Heart Assoc. 2017; 6. https://doi.org/10.1002/pbc.26660.

  84. Rigaud VO, Ferreira LR, Ayub-Ferreira SM, Avila MS, Brandao SM, Cruz FD, Santos MH, Cruz CB, Alves MS, Issa VS, Guimaraes GV, Cunha-Neto E, Bocchi EA. Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. Oncotarget. 2017;8:6994–7002.

    Article  PubMed  Google Scholar 

  85. Gioffré S, Chiesa M, Cardinale DM, Ricci V, Vavassori C, Cipolla CM, et al. Circulating microRNAs as potential predictors of anthracycline-induced troponin elevation in breast cancer patients: diverging effects of doxorubicin and epirubicin. J Clin Med. 2020;9(5):1418. https://doi.org/10.3390/jcm9051418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chow EJ, Leger KJ, Bhatt NS, Mulrooney DA, Ross CJ, Aggarwal A, Bansal N, Ehrhardt MJ, Armenian AH, Scott JM, Hong B. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment. Cardiovasc Res. 2019;115:922–34. https://doi.org/10.1093/cvr/cvz031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure. J Am Coll Cardiol. 2005;46:1–82.

    Article  Google Scholar 

  88. Hunt SA, Abraham WT, Chin MH, et al. Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1-90.

    Article  PubMed  Google Scholar 

  89. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20:4517–22.

    Article  CAS  PubMed  Google Scholar 

  90. Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22:820–8.

    Article  CAS  PubMed  Google Scholar 

  91. Gupta V, Kumar Singh S, Agrawal V, Bali Singh T. Role of ACE inhibitors in anthracycline-induced cardiotoxicity: a randomized, double-blind, placebo-controlled trial. Pediatr Blood Cancer. 2018; e27308. https://doi.org/10.1002/pbc.27308.

  92. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–13.

    Article  CAS  PubMed  Google Scholar 

  93. Armenian SH, Hudson MM, Hui Chen M, Colan SD, Lindenfeld L, Mills G, Siyahian A, Gelehrter S, Dang H, Hein W, Green DM, Robison LL, Wong FL, Douglas PS, Bhatia S. Rationale and design of the Children’s Oncology Group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood s cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord. 2016;16:187. https://doi.org/10.1186/s12872-016-0364-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll of Cardiol. 2006;48(11):2258–62. https://doi.org/10.1016/j.jacc.2006.07.052.

    Article  CAS  Google Scholar 

  95. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo- controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37:1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (prevention of left ventricular dysfunction with enalapril and caRvedilol in patients submitted to intensive chemotherapy for the treatment of malignant hEmopathies). J Am Coll Cardiol. 2013;61:2355–62.

    Article  CAS  PubMed  Google Scholar 

  97. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  CAS  PubMed  Google Scholar 

  98. Henricksen PA. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2018;104(12):971–7. https://doi.org/10.1136/heartjnl-2017-312103.

    Article  CAS  Google Scholar 

  99. Kunisada K, Negoro S, Tone E, et al. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA. 2000;97:315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kirkham AA, Shave RE, Bland KA, et al. Protective effects of acute exercise prior to doxorubicin on cardiac function of breast cancer patients: a proof-of-concept RCT. Int J Cardiol. 2017;245:263–70.

    Article  CAS  PubMed  Google Scholar 

  101. Kirkham AA, Eves ND, Shave RE, et al. The effect of an aerobic exercise bout 24 h prior to each doxorubicin treatment for breast cancer on markers of cardiotoxicity and treatment symptoms: a RCT. Breast Cancer Res Treat. 2018;167:719–29.

    Article  CAS  PubMed  Google Scholar 

  102. Blanchard CM, Courneya KS, Stein K. Cancer survivors’ adherence to lifestyle behavior recommendations and associations with health-related quality of life: results from the American Cancer Society’s SCS-II. J Clin Oncol. 2008;26:2198–204.

    Article  PubMed  Google Scholar 

  103. Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJL. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016; (3). Art. No.:CD008796. https://doi.org/10.1002/14651858.CD008796.pub3.

  104. Felicetti F, Fortunati N, Brignardello E. Cancer survivors: an expanding population with an increased cardiometabolic risk, diabetes research and clinical practice. 2018. https://doi.org/10.1016/j.diabres.2018.02.016.

  105. Christoffersen L, Gibson TM, Pui C-H, et al. Cardiac autonomic dysfunction in survivors of childhood acute lymphoblastic leukemia: the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer 2020;e28388. https://doi.org/10.1002/pbc.28388.

  106. de Haas EC. The metabolic syndrome in cancer survivors. Lancet Oncol. 2010;11:193–203.

    Article  PubMed  Google Scholar 

  107. Gilchrist SC, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors. A scientific statement from the American Heart Association. Circulation. 2019;139:e997–e1012. https://doi.org/10.1161/CIR.0000000000000679.

  108. D’Ascenzi F, Anselmi F, Fiorentini C, Mannucci R, Bonifazi M, Mondillo S. The benefits of exercise in cancer patients and the criteria for exercise prescription in cardio-oncology. Eur J Prev Cardiol. 2019. https://doi.org/10.1177/2047487319874900.

    Article  PubMed  Google Scholar 

  109. Chicco AJ, Schneider CM, Hayward R. Exercise training attenuates acute doxorubicin-induced cardiac dysfunction. J Cardiovasc Pharmacol. 2006;47:182–9.

    Article  CAS  PubMed  Google Scholar 

  110. Mina DS, Langelier D, Adams SC, et al. Exercise as part of routine cancer care. Lancet Oncol. 2018;19:e433–6.

    Article  PubMed  Google Scholar 

  111. Chow EJ, Ness KK, Armstrong GT, Bhakta N, Yeh JM, Bhatia S, Landier W, Constine LS, Hudson MM, Nathan PC. Current and coming challenges in the management of the survivorship population. Semin Oncol. 2020;47(1):23–39. https://doi.org/10.1053/j.seminoncol.2020.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Passport for Care; available: https://cancersurvivor.passportforcare.org/: Passport for Care Cancer Survivor Website, 2019. Accessed 27 Sep 2022.

  113. Chen Y, Chow EJ, Oeffinger KC, Border WL, Leisenring WM, Meacham LR, et al. Traditional cardiovascular risk factors and individual prediction of cardiovascular events in childhood cancer survivors. J Natl Cancer Inst. 2020;112 (3). https://doi.org/10.1093/jnci/djz108.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bennati.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not directly report the results of any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennati, E., Girolami, F., Spaziani, G. et al. Cardio-Oncology in Childhood: State of the Art. Curr Oncol Rep 24, 1765–1777 (2022). https://doi.org/10.1007/s11912-022-01329-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01329-6

Keywords

Navigation