Skip to main content

Advertisement

Log in

Pharmacogenetics of Chemotherapy-Induced Cardiotoxicity

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to summarize current understanding of pharmacogenetics and pharmacogenomics in chemotherapy-induced cardiotoxicity.

Recent Findings

Most of the studies rely on in vitro cytotoxic assays. There have been several smaller scale candidate gene approaches and a handful of genome-wide studies linking genetic variation to susceptibility to chemotherapy-induced cardiotoxicity. Currently, pharmacogenomic testing of all childhood cancer patients with an indication for doxorubicin or daunorubicin therapy for RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 variants is recommended. There is no recommendation regarding testing in adults.

Summary

There is clear evidence pointing to the role of pharmacogenetics and pharmacogenomics in cardiotoxicity susceptibility to chemotherapeutic agents. Larger scale studies are needed to further identify susceptibility markers and to develop pharmacogenomics-based risk profiling to improve quality of life and life expectancy in cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bini I, Asaftei SD, Riggi C, Tirtei E, Manicone R, Biasin E, et al. Anthracycline-induced cardiotoxicity in patients with paediatric bone sarcoma and soft tissue sarcoma. Cardiol Young. 2017:1–8.

  2. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy. clinical relevance and response to pharmacologic therapy J Am Coll Cardiol. 2010;55(3):213–20.

    Article  PubMed  CAS  Google Scholar 

  3. Chien AJ, Rugo HS. The cardiac safety of trastuzumab in the treatment of breast cancer. Expert Opin Drug Saf. 2010;9(2):335–46.

    Article  PubMed  CAS  Google Scholar 

  4. Santoni M, Guerra F, Conti A, Lucarelli A, Rinaldi S, Belvederesi L, et al. Incidence and risk of cardiotoxicity in cancer patients treated with targeted therapies. Cancer Treat Rev. 2017;59:123–31.

    Article  PubMed  CAS  Google Scholar 

  5. Hahn E, Jiang H, Ng A, Bashir S, Ahmed S, Tsang R, et al. Late cardiac toxicity after Mediastinal radiation therapy for Hodgkin lymphoma: contributions of coronary artery and whole heart dose-volume variables to risk prediction. Int J Radiat Oncol Biol Phys. 2017;98(5):1116–23.

    Article  PubMed  Google Scholar 

  6. Myrehaug S, Pintilie M, Tsang R, Mackenzie R, Crump M, Chen Z, et al. Cardiac morbidity following modern treatment for Hodgkin lymphoma: supra-additive cardiotoxicity of doxorubicin and radiation therapy. Leuk Lymphoma. 2008;49(8):1486–93.

    Article  PubMed  CAS  Google Scholar 

  7. Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6(8):557–65.

    Article  PubMed  Google Scholar 

  8. Perego P, Corna E, De Cesare M, Gatti L, Polizzi D, Pratesi G, et al. Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem. 2001;8(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  9. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy Cancer Chemother Pharmacol. 2002;50(5):343–52.

    PubMed  CAS  Google Scholar 

  10. Press MF, Sauter G, Buyse M, Bernstein L, Guzman R, Santiago A, et al. Alteration of topoisomerase II-alpha gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol. 2011;29(7):859–67.

    Article  PubMed  CAS  Google Scholar 

  11. Tokarska-Schlattner M, Lucchinetti E, Zaugg M, Kay L, Gratia S, Guzun R, et al. Early effects of doxorubicin in perfused heart: transcriptional profiling reveals inhibition of cellular stress response genes. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R1075–88.

    Article  PubMed  CAS  Google Scholar 

  12. Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49(13):2900–9.

    Article  PubMed  CAS  Google Scholar 

  13. Marty M, Espie M, Llombart A, Monnier A, Rapoport BL, Stahalova V, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. 2006;17(4):614–22.

    Article  PubMed  CAS  Google Scholar 

  14. Schloemer NJ, Brickler M, Hoffmann R, Pan A, Simpson P, McFadden V, et al. Administration of Dexrazoxane Improves Cardiac Indices in children and young adults with acute myeloid leukemia (AML) while maintaining survival outcomes. J Pediatr Hematol Oncol. 2017;39(5):e254-e8.

    Article  CAS  Google Scholar 

  15. Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Godtel-Armbrust U, et al. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer. 2014;14:842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Deng S, Yan T, Nikolova T, Fuhrmann D, Nemecek A, Godtel-Armbrust U, et al. The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells. Br J Pharmacol. 2015;172(9):2246–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Junjing Z, Yan Z, Baolu Z. Scavenging effects of dexrazoxane on free radicals. J Clin Biochem Nutr. 2010;47(3):238–45.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin fab. Nature. 2003;421(6924):756–60.

    Article  PubMed  CAS  Google Scholar 

  19. Le XF, Pruefer F, Bast RC Jr. HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle. 2005;4(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  20. Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hubner N, et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci. 2002;99(13):8880–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mohan N, Shen Y, Endo Y, ElZarrad MK, Wu WJ. Trastuzumab, but not Pertuzumab, Dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human Cardiomyocytes. Mol Cancer Ther. 2016;15(6):1321–31.

    Article  PubMed  CAS  Google Scholar 

  22. Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al. A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr. 1993(15):117–30.

  23. Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9(9):1704–12.

    Article  PubMed  CAS  Google Scholar 

  24. Howarth FC, Calaghan SC, Boyett MR, White E. Effect of the microtubule polymerizing agent taxol on contraction, Ca2+transient and L-type Ca2+current in rat ventricular myocytes. J Physiol. 1999;516(2):409–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yeh ETH, Bickford CL. Cardiovascular complications of Cancer therapy. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  PubMed  CAS  Google Scholar 

  26. Giordano SH, Booser DJ, Murray JL, Ibrahim NK, Rahman ZU, Valero V, et al. A detailed evaluation of cardiac toxicity: a phase II study of doxorubicin and one- or three-hour-infusion paclitaxel in patients with metastatic breast cancer. Clin Cancer Res. 2002;8(11):3360–8.

    PubMed  CAS  Google Scholar 

  27. Pentassuglia L, Timolati F, Seifriz F, Abudukadier K, Suter TM, Zuppinger C. Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes. Exp Cell Res. 2007;313(8):1588–601.

    Article  PubMed  CAS  Google Scholar 

  28. Arora A. Role of tyrosine kinase inhibitors in Cancer therapy. J Pharmacol Exp Ther. 2005;315(3):971–9.

    Article  PubMed  CAS  Google Scholar 

  29. López-Otín C, Hunter T. The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer. 2010;10(4):278–92.

    Article  PubMed  CAS  Google Scholar 

  30. Kerkelä R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16.

    Article  PubMed  CAS  Google Scholar 

  31. Maurea N, Coppola C, Piscopo G, Galletta F, Riccio G, Esposito E, et al. Pathophysiology of cardiotoxicity from target therapy and angiogenesis inhibitors. J Cardiovasc Med (Hagerstown). 2016;17 Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection:e19-e26.

  32. Dincer M, Altundag K. Angiotensin-converting enzyme inhibitors for Bevacizumab-induced hypertension. Ann Pharmacother. 2006;40(12):2278–9.

    Article  PubMed  Google Scholar 

  33. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of Bevacizumab, an anti–vascular endothelial growth factor antibody, for metastatic renal Cancer. N Engl J Med. 2003;349(5):427–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zakarija A, Soff G. Update on angiogenesis inhibitors. Curr Opin Oncol. 2005;17(6):578–83.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson PM, Danenberg PV, Johnston PG, Lenz H-J, Ladner RD. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol. 2014;11(5):282–98.

    Article  PubMed  CAS  Google Scholar 

  36. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.

    Article  PubMed  CAS  Google Scholar 

  37. Van Cutsem E. Incidence of cardiotoxicity with the oral fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil. Ann Oncol. 2002;13(3):484–5.

    Article  PubMed  Google Scholar 

  38. Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2007;134(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  39. Saif MW, Tomita M, Ledbetter L, Diasio RB. Capecitabine-related cardiotoxicity: recognition and management. J Support Oncol. 2008;6(1):41–8.

    PubMed  CAS  Google Scholar 

  40. Salepci T, Seker M, Uyarel H, Gumus M, Bilici A, Ustaalioğlu BBO, et al. 5-fluorouracil induces arterial vasoconstrictions but does not increase angiotensin II levels. Med Oncol. 2009;27(2):416–20.

    Article  PubMed  CAS  Google Scholar 

  41. Baerlocher GM, Beer JH, Owen GR, Meiselman HJ, Reinhart WH. The anti-neoplastic drug 5-fluorouracil produces echinocytosis and affects blood rheology. Br J Haematol. 1997;99(2):426–32.

    Article  PubMed  CAS  Google Scholar 

  42. Kumar S, Gupta RK, Samal N. 5-fluorouracil induced cardiotoxicity in albino rats. Mater Med Pol. 1995;27(2):63–6.

    PubMed  CAS  Google Scholar 

  43. Torti FM, Bristow MR, Howes AE, Aston D, Stockdale FE, Carter SK, et al. Reduced cardiotoxicity of doxorubicin delivered on a weekly schedule. Assessment by endomyocardial biopsy. Ann Intern Med. 1983;99(6):745–9.

    Article  PubMed  CAS  Google Scholar 

  44. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35(8):893–911.

    Article  PubMed  Google Scholar 

  45. Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the international late effects of childhood Cancer guideline harmonization group. Lancet Oncol. 2015;16(3):e123–36.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the childhood Cancer survivor study cohort. BMJ. 2009;339:b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frick A, Fedoriw Y, Richards K, Damania B, Parks B, Suzuki O, et al. Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics. Pharmgenomics Pers Med. 2015;8:81–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Dolan ME, Newbold KG, Nagasubramanian R, Wu X, Ratain MJ, Cook EH Jr, et al. Heritability and linkage analysis of sensitivity to cisplatin-induced cytotoxicity. Cancer Res. 2004;64(12):4353–6.

    Article  PubMed  CAS  Google Scholar 

  49. Watters JW, Kraja A, Meucci MA, Province MA, McLeod HL. Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc Natl Acad Sci U S A. 2004;101(32):11809–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Duan S, Bleibel WK, Huang RS, Shukla SJ, Wu X, Badner JA, et al. Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res. 2007;67(11):5425–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Huang RS, Duan S, Kistner EO, Bleibel WK, Delaney SM, Fackenthal DL, et al. Genetic variants contributing to daunorubicin-induced cytotoxicity. Cancer Res. 2008;68(9):3161–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Stark AL, Zhang W, Mi S, Duan S, O'Donnell PH, Huang RS, et al. Heritable and non-genetic factors as variables of pharmacologic phenotypes in lymphoblastoid cell lines. Pharmacogenomics J. 2010;10(6):505–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven ED, Altena R, Honkoop A, et al. Angiotensin II-receptor inhibition with candesartan to prevent Trastuzumab-related Cardiotoxic effects in patients with early breast Cancer: a randomized clinical trial. JAMA Oncol. 2016;2(8):1030–7.

    Article  PubMed  Google Scholar 

  54. Stanton SE, Ward MM, Christos P, Sanford R, Lam C, Cobham MV, et al. Pro1170 Ala polymorphism in HER2-neu is associated with risk of trastuzumab cardiotoxicity. BMC Cancer. 2015;15:267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lemieux J, Diorio C, Cote MA, Provencher L, Barabe F, Jacob S, et al. Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Res. 2013;33(6):2569–76.

    PubMed  CAS  Google Scholar 

  56. Dell'Acqua G, Polishchuck R, Fallon JT, Gordon JW. Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Hum Gene Ther. 1999;10(8):1269–79.

    Article  PubMed  CAS  Google Scholar 

  57. • Linschoten M, Teske AJ, Baas AF, Vink A, Dooijes D, Baars HF, et al. Truncating Titin (TTN) Variants in Chemotherapy-Induced Cardiomyopathy. J Card Fail. 2017;23(6):476–9. This is the first report implicating an association between truncating TTN variants and chemotherapy-induced cardiomyopathy.

  58. Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children's oncology group. J Clin Oncol. 2012;30(13):1415–21.

    Article  PubMed  CAS  Google Scholar 

  59. • Hertz DL, Caram MV, Kidwell KM, Thibert JN, Gersch C, Seewald NJ, et al. Evidence for association of SNPs in ABCB1 and CBR3, but not RAC2, NCF4, SLC28A3 or TOP2B, with chronic cardiotoxicity in a cohort of breast cancer patients treated with anthracyclines. Pharmacogenomics. 2016;17(3):231–40. In a small cohort of 166 breast cancer patients, including 19 cases with systolic dysfunction and 147 controls treated with doxorubicin, 4 top priority candidate SNPs in RAC2, NCF4, SLC28A3 and TOP2B were tested. No significant association with anthracycline-induced cardiotoxicity was identified. Larger clinical cohorts are needed to sufficiently power the study for discovery and validation.

  60. • Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, Ansari M, et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2017;17(1):107. In a small cohort of 251 Caucasian children of French-Canadian origin diagnosed with ALL and treated with doxorubicin, 33 common polymorphisms in 12 candidate genes were tested. Two polymophisms in ABCC5 and NOS3 were associated with systolic function.

    Article  PubMed  CAS  Google Scholar 

  61. Rajic V, Aplenc R, Debeljak M, Prestor VV, Karas-Kuzelicki N, Mlinaric-Rascan I, et al. Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma. 2009;50(10):1693–8.

    Article  PubMed  CAS  Google Scholar 

  62. •• Visscher H, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, Kremer LC, et al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics. 2015;16(10):1065–76. In two cohorts (n=344 and n=218) treated for childhood cancer, 4578 SNPs were tested. Significant associations with anthracycline-induced cardiotoxicity were identified in SLC22A17 and SLC22A7, which were replicated in the second cohort. A genotype-guided risk prediction model was built to risk stratify patient outcomes.

  63. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dube MP, Al-Saloos H, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012;30(13):1422–8.

    Article  PubMed  Google Scholar 

  64. Visscher H, Ross CJ, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer. 2013;60(8):1375–81.

    Article  PubMed  CAS  Google Scholar 

  65. Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112(24):3754–62.

    Article  PubMed  CAS  Google Scholar 

  66. •• Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079–84. This is the earliest unbiased genome-wide association study complete with a discovery (n=280) and a validation (n=176) cohort. A non-synonymous variant in RARG was highly associated with anthracycline-induced cardiotoxicity.

  67. Leong SL, Chaiyakunapruk N, Lee SW. Candidate Gene Association studies of Anthracycline-induced Cardiotoxicity: a systematic review and meta-analysis. Sci Rep. 2017;7(1):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Bilbija D, Haugen F, Sagave J, Baysa A, Bastani N, Levy FO, et al. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling. PLoS One. 2012;7(9):e44740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Delacroix L, Moutier E, Altobelli G, Legras S, Poch O, Choukrallah MA, et al. Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol Cell Biol. 2010;30(1):231–44.

    Article  PubMed  CAS  Google Scholar 

  70. •• Wang X, Sun CL, Quinones-Lombrana A, Singh P, Landier W, Hageman L, et al. CELF4 Variant and Anthracycline-Related Cardiomyopathy: A Children's Oncology Group Genome-Wide Association Study. J Clin Oncol. 2016;34(8):863–70. This is the second unbiased genome-wide association study was conducted in childhood cancer survivors with and without cardiomyopathy. A modifying SNP rs1786814 on the CELF4 gene was identified as an independent risk factor for anthracycline-induced cardiotoxicity in those in the treatment group (P = 1.14 × 10-5), possibly via a pathway that involves the expression of abnormally spliced TNNT2 variants.

  71. Linschoten M, Teske AJ, Cramer MJ, van der Wall E, Asselbergs FW. Chemotherapy-Related Cardiac Dysfunction. A Systematic Review of Genetic Variants Modulating Individual Risk. 2018;11(1).

  72. Aminkeng F, Ross CJ, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. •• Schneider BP, Shen F, Gardner L, Radovich M, Li L, Miller KD, et al. Genome-Wide Association Study for Anthracycline-Induced Congestive Heart Failure. Clin Cancer Res. 2017;23(1):43–51. This is the first unbiased genome-wide association study conducted in adult breast cancer patients.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica J. Wang.

Ethics declarations

Conflict of Interest

Vivian Y. Chang and Jessica J. Wang declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, V.Y., Wang, J.J. Pharmacogenetics of Chemotherapy-Induced Cardiotoxicity. Curr Oncol Rep 20, 52 (2018). https://doi.org/10.1007/s11912-018-0696-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0696-8

Keywords

Navigation