Skip to main content

Advertisement

Log in

Advances in Diagnosis and Treatment for Leptomeningeal Disease in Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Melanoma has one of the highest incidences of causing leptomeningeal disease (LMD) among solid tumors. LMD patients have very poor prognosis with a dismal survival despite aggressive management. In this article, we review the current approaches in the management of patients with LMD secondary to melanoma, including updates in diagnosis, treatment, up-to-date clinical studies, and future directions.

Recent Findings

Cerebrospinal fluid (CSF) cytology remains the gold standard for diagnosis, and alternatively, MRI based on clinical presentation can be used. Other approaches such as “liquid biopsies” that detect circulating tumor cells and cell-free DNA have the potential to considerably enhance the diagnosis of LMD from melanoma. As for treatment options, several systemic therapies, involving systemic targeted and immunotherapies have evolved that showed to have possible benefit in LMD patients. Intrathecal chemotherapy, cellular therapy, and immunotherapy are currently under evaluation in Phase I/II clinical trials. In addition, new radiation therapy approaches such as proton cranial-spinal irradiation (CSI) are currently under investigation.

Summary

LMD management still remains challenging. Future studies are critical to elucidate the pathophysiology of LMD in order to develop new urgently needed diagnostic tools and therapies. Clinical trials ought to be expanded to include patients with LMD. Future clinical studies should also integrate tissue interrogation, scientifically designed therapies, and aggressive, early intervention in patients with suspected LMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cohen JV, Tawbi H, Margolin KA, et al. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res. 2016;29(6):627–42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leal T, Chang JE, Mehta M, Robins HI. Leptomeningeal metastasis: challenges in diagnosis and treatment. Curr Cancer Ther Rev. 2011;7(4):319–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Glitza IC, Smalley KSM, Brastianos PK, et al. Leptomeningeal disease in melanoma patients: an update to treatment, challenges, and future directions. Pigment Cell Melanoma Res. 2020;33(4):527–41.

    Article  PubMed  Google Scholar 

  4. Davies MA, Liu P, McIntyre S, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117(8):1687–96.

    Article  PubMed  Google Scholar 

  5. Ferguson SD, Bindal S, Bassett RL, Jr., et al. Predictors of survival in metastatic melanoma patients with leptomeningeal disease (LMD). J Neurooncol. 2019;142(3):499-509. (Largest contemporary cohort of melanoma LMD patients, describing the outcome and predictors of survival.)

    Article  CAS  PubMed  Google Scholar 

  6. Le Rhun E, Taillibert S, Chamberlain MC. Carcinomatous meningitis: leptomeningeal metastases in solid tumors. Surg Neurol Int. 2013;4(Suppl 4):S265-288. (Excellent overview of diagnosis, presentation, and OS of LMD from solid tumors in general.)

    PubMed  PubMed Central  Google Scholar 

  7. Taillibert S, Chamberlain MC. Leptomeningeal metastasis. Handb Clin Neurol. 2018;149:169–204.

    Article  PubMed  Google Scholar 

  8. Wang N, Bertalan MS, Brastianos PK. Leptomeningeal metastasis from systemic cancer: review and update on management. Cancer. 2018;124(1):21–35.

    Article  PubMed  Google Scholar 

  9. Cagney DN, Lamba N, Sinha S, et al. Association of neurosurgical resection with development of pachymeningeal seeding in patients with brain metastases. JAMA Oncol. 2019;5(5):703–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chamberlain M, Junck L, Brandsma D, et al. Leptomeningeal metastases: a RANO proposal for response criteria. Neuro Oncol. 2017;19(4):484–92.

    PubMed  Google Scholar 

  11. Glantz MJ, Cole BF, Glantz LK, et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer. 1998;82(4):733–9.

    Article  CAS  PubMed  Google Scholar 

  12. Boire A, Brandsma D, Brastianos PK, et al. Liquid biopsy in central nervous system metastases: a RANO review and proposals for clinical applications. Neuro Oncol. 2019;21(5):571-584. (Outstanding contemporary review of the state of liquid biopsies for CNS metastases.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin X, Fleisher M, Rosenblum M, et al. Cerebrospinal fluid circulating tumor cells: a novel tool to diagnose leptomeningeal metastases from epithelial tumors. Neuro Oncol. 2017;19(9):1248–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Rhun E, Tu Q, De Carvalho BM, et al. Detection and quantification of CSF malignant cells by the Cell Search technology in patients with melanoma leptomeningeal metastasis. Med Oncol. 2013;30(2):538.

    Article  PubMed  Google Scholar 

  16. Smalley I, Evernden B, Law V, et al. Abstract 2108: detection and molecular profiling of leptomeningeal disease in melanoma. Can Res. 2018;78(13 Supplement):2108–2108.

    Article  Google Scholar 

  17. Pentsova EI, Shah RH, Tang J, et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol. 2016;34(20):2404-2415. (The first large scale sequencing of CSF.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Mattos-Arruda L, Mayor R, Ng CKY, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fan Y, Zhu X, Xu Y, et al. Cell-cycle and DNA-damage response pathway is involved in leptomeningeal metastasis of non-small cell lung cancer. Clin Cancer Res. 2018;24(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  20. Li YS, Jiang BY, Yang JJ, et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy. Ann Oncol. 2018;29(4):945–52.

    Article  CAS  PubMed  Google Scholar 

  21. Marchiò C, Mariani S, Bertero L, et al. Liquoral liquid biopsy in neoplastic meningitis enables molecular diagnosis and mutation tracking: a proof of concept. Neuro Oncol. 2017;19(3):451–3.

    PubMed  Google Scholar 

  22. Momtaz P, Pentsova E, Abdel-Wahab O, et al. Quantification of tumor-derived cell free DNA(cfDNA) by digital PCR (DigPCR) in cerebrospinal fluid of patients with BRAFV600 mutated malignancies. Oncotarget. 2016;7(51):85430–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Siravegna G, Geuna E, Mussolin B, et al. Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases. ESMO Open. 2017;2(4):e000253.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.

    Article  CAS  PubMed  Google Scholar 

  25. Ballester LY, Glitza Oliva IC, Douse DY, et al. Evaluating circulating tumor DNA from the cerebrospinal fluid of patients with melanoma and leptomeningeal disease. J Neuropathol Exp Neurol. 2018;77(7):628–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abaskharoun M. A Randomized, Double-Blind Phase 2/3 Study of Relatlimab Combined with Nivolumab versus Nivolumab in Participants with Previously Untreated Metastatic or Unresectable Melanoma. 2019.

  27. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu X, Huang X, Chen X, et al. Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy. MAbs. 2019;11(6):1139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koller KM, Mackley HB, Liu J, et al. Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone. Cancer Biol Ther. 2017;18(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  31. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Margolin K, Ernstoff MS, Hamid O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65.

    Article  CAS  PubMed  Google Scholar 

  33. Bot I, Blank CU, Brandsma D. Clinical and radiological response of leptomeningeal melanoma after whole brain radiotherapy and ipilimumab. J Neurol. 2012;259(9):1976–8.

    Article  CAS  PubMed  Google Scholar 

  34. Wu RC, Newman W, Patanowitz L, Branstetter BF, Amankulor N, Tarhini AA. Long-term control of leptomeningeal disease after radiation therapy and nivolumab in a metastatic melanoma patient. Immunotherapy. 2020;12(11):763–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glitza I, Bucheit A. Clinical response of central nervous system melanoma to anti-PD1 therapy in 2 melanoma patients. Arch Immunol. 2017;1(1):1–3.

    Google Scholar 

  36. Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018.

  37. National Institute of Health (NIH) Cg. Tumors metastatic to brain. 2021.

  38. Fedorenko IV, Gibney GT, Sondak VK, Smalley KSM. Beyond BRAF: where next for melanoma therapy? Brit J Cancer. 2015;112(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  39. Arasaratnam M, Hong A, Shivalingam B, et al. Leptomeningeal melanoma—a case series in the era of modern systemic therapy. Pigment Cell Melanoma Res. 2018;31(1):120–4.

    Article  PubMed  Google Scholar 

  40. Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF. Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther. 2012;342(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mittapalli RK, Vaidhyanathan S, Dudek AZ, Elmquist WF. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: implications for the treatment of melanoma brain metastases. J Pharmacol Exp Ther. 2013;344(3):655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18(7):863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakji-Dupre L, Le Rhun E, Templier C, Desmedt E, Blanchet B, Mortier L. Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma. Melanoma Res. 2015;25(4):302–5.

    Article  CAS  PubMed  Google Scholar 

  44. Lee JM, Mehta UN, Dsouza LH, Guadagnolo BA, Sanders DL, Kim KB. Long-term stabilization of leptomeningeal disease with whole-brain radiation therapy in a patient with metastatic melanoma treated with vemurafenib: a case report. Melanoma Res. 2013;23(2):175–8.

    Article  PubMed  Google Scholar 

  45. Schäfer N, Scheffler B, Stuplich M, et al. Vemurafenib for leptomeningeal melanomatosis. J Clin Oncol. 2013;31(11):e173-174.

    Article  PubMed  Google Scholar 

  46. Kim DW, Barcena E, Mehta UN, et al. Prolonged survival of a patient with metastatic leptomeningeal melanoma treated with BRAF inhibition-based therapy: a case report. BMC Cancer. 2015;15:400.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wilgenhof S, Neyns B. Complete cytologic remission of V600E BRAF-mutant melanoma-associated leptomeningeal carcinomatosis upon treatment with dabrafenib. J Clin Oncol. 2015;33(28):e109-111.

    Article  PubMed  Google Scholar 

  48. Abu-Gheida I, Chao S, Murphy E, et al. Targeted therapy after brain radiotherapy for BRAF-mutated melanoma with extensive ependymal disease with prolonged survival: case report and review of the literature. Front Oncol. 2019;9:168.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Floudas CS, Chandra AB, Xu Y. Vemurafenib in leptomeningeal carcinomatosis from melanoma: a case report of near-complete response and prolonged survival. Melanoma Res. 2016;26(3):312–5.

    Article  CAS  PubMed  Google Scholar 

  50. Glitza IC, Ferguson SD, Guha-Thakurta N. Rapid resolution of leptomeningeal disease with targeted therapy in a metastatic melanoma patient. J Neurooncol. 2017;133(3):663–5.

    Article  PubMed  Google Scholar 

  51. GeukesFoppen MH, Brandsma D, Blank CU, van Thienen JV, Haanen JB, Boogerd W. Targeted treatment and immunotherapy in leptomeningeal metastases from melanoma. Ann Oncol. 2016;27(6):1138–42.

    Article  CAS  Google Scholar 

  52. DeVita VT, Lawrence, T.S., Rosenberg, S.A. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 11th ed. 2011.

  53. Gammon DC, Bhatt MS, Tran L, Van Horn A, Benvenuti M, Glantz MJ. Intrathecal topotecan in adult patients with neoplastic meningitis. Am J Health Syst Pharm. 2006;63(21):2083–6.

    Article  CAS  PubMed  Google Scholar 

  54. Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan T, Ettinger DS. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J Clin Oncol. 1993;11(3):561–9.

    Article  CAS  PubMed  Google Scholar 

  55. Lukas RV, Mata-Machado NA, Nicholas MK, Salgia R, Antic T, Villaflor VM. Leptomeningeal carcinomatosis in esophageal cancer: a case series and systematic review of the literature. Dis Esophagus. 2015;28(8):772–81.

    Article  CAS  PubMed  Google Scholar 

  56. Pape E, Desmedt E, Zairi F, et al. Leptomeningeal metastasis in melanoma: a prospective clinical study of nine patients. In Vivo. 2012;26(6):1079–86.

    PubMed  Google Scholar 

  57. Blaney SM, Balis FM, Poplack DG. Pharmacologic approaches to the treatment of meningeal malignancy. Oncology (Williston Park). 1991;5(5):107–16 (discussion 123, 127).

    CAS  PubMed  Google Scholar 

  58. Patil S, Rathnum KK. Management of leptomeningeal metastases in non-small cell lung cancer. Indian J Cancer. 2019;56(Supplement):S1–9.

    Article  PubMed  Google Scholar 

  59. Tsujimura M, Kusamori K, Nishikawa M. Rapid regulation of human mesenchymal stem cell proliferation using inducible caspase-9 suicide gene for safe cell-based therapy. Int J Mol Sci. 2019;20(22).

  60. De Clercq E, Edy VG, De Vlieger H, Eeckels R, Desmyter J. Intrathecal administration of interferon in neonatal herpes. J Pediatr. 1975;86(5):736–9.

    Article  PubMed  Google Scholar 

  61. Meyers CA, Obbens EA, Scheibel RS, Moser RP. Neurotoxicity of intraventricularly administered alpha-interferon for leptomeningeal disease. Cancer. 1991;68(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  62. List J, Moser RP, Steuer M, Loudon WG, Blacklock JB, Grimm EA. Cytokine responses to intraventricular injection of interleukin 2 into patients with leptomeningeal carcinomatosis: rapid induction of tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, gamma-interferon, and soluble interleukin 2 receptor (Mr 55,000 protein). Cancer Res. 1992;52(5):1123–8.

    CAS  PubMed  Google Scholar 

  63. Samlowski WE, Park KJ, Galinsky RE, Ward JH, Schumann GB. Intrathecal administration of interleukin-2 for meningeal carcinomatosis due to malignant melanoma: sequential evaluation of intracranial pressure, cerebrospinal fluid cytology, and cytokine induction. J Immunother Emphasis Tumor Immunol. 1993;13(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  64. Papadopoulos N, Gerber D, Eton O, Bedikian A. The role of intrathecal (IT) use of interleukin-2 (IL-2) in the treatment of leptomeningeal disease (LMD) in patients (pts) with melanoma. Paper presented at: Proc Am Soc Clin Oncol. 2002.

  65. Glitza IC, Rohlfs M, Guha-Thakurta N, et al. Retrospective review of metastatic melanoma patients with leptomeningeal disease treated with intrathecal interleukin-2. ESMO Open. 2018;3(1):e000283.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Clemons-Miller AR, Chatta GS, Hutchins L, et al. Intrathecal cytotoxic T-cell immunotherapy for metastatic leptomeningeal melanoma. Clin Cancer Res. 2001;7(3 Suppl):917s–24s.

    CAS  PubMed  Google Scholar 

  67. Glitza IC, Haymaker C, Bernatchez C, et al. Intrathecal administration of tumor-infiltrating lymphocytes is well tolerated in a patient with leptomeningeal disease from metastatic melanoma: a case report. Cancer Immunol Res. 2015;3(11):1201-1206. (The largest cohort of melanoma LMD patients treated with intrathecal interleukin-2.)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sridhar P, Petrocca F. Regional delivery of chimeric antigen receptor (CAR) T-cells for cancer therapy. Cancers (Basel). 2017;9(7).

  69. Land CA, Musich PR, Haydar D, Krenciute G, Xie Q. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med. 2020;18(1):428.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pluim D, Ros W, van Bussel MTJ, Brandsma D, Beijnen JH, Schellens JHM. Enzyme linked immunosorbent assay for the quantification of nivolumab and pembrolizumab in human serum and cerebrospinal fluid. J Pharm Biomed Anal. 2019;164:128–34.

    Article  CAS  PubMed  Google Scholar 

  71. van Bussel MTJ, Beijnen JH, Brandsma D. Intracranial antitumor responses of nivolumab and ipilimumab: a pharmacodynamic and pharmacokinetic perspective, a scoping systematic review. BMC Cancer. 2019;19(1):519.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huppert LA, Melisko ME, Glastonbury CM, Khanafshar E, Daud AI. Treatment of metastatic melanoma with leptomeningeal disease using intrathecal immunotherapy. JCO Oncol Pract. 2020;16(11):757–9.

    Article  PubMed  Google Scholar 

  73. Ommaya AK. Subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet. 1963;2(7315):983-984. (Dr. Ommaya communicates for the first time his invention of the Ommaya reservoir for IT treatment.)

    Article  CAS  PubMed  Google Scholar 

  74. Bauer DF, Razdan SN, Bartolucci AA, Markert JM. Meta-analysis of hemorrhagic complications from ventriculostomy placement by neurosurgeons. Neurosurgery. 2011;69(2):255–60.

    Article  PubMed  Google Scholar 

  75. Prandoni P, Lensing AW, Piccioli A, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood. 2002;100(10):3484–8.

    Article  CAS  PubMed  Google Scholar 

  76. Horsted F, West J, Grainge MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 2012;9(7):e1001275.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mead PA, Safdieh JE, Nizza P, Tuma S, Sepkowitz KA. Ommaya reservoir infections: a 16-year retrospective analysis. J Infect. 2014;68(3):225–30 undefinedOmmaya and risk of infection, showing the risk of infection being generally acceptable, with OmR infection occurring in one of every 20 persons with the device.

    Article  PubMed  Google Scholar 

  78. Szvalb AD, Raad II, Weinberg JS, Suki D, Mayer R, Viola GM. Ommaya reservoir-related infections: clinical manifestations and treatment outcomes. J Infect. 2014;68(3):216–24.

    Article  PubMed  Google Scholar 

  79. Bin Nafisah S, Ahmad M. Ommaya reservoir infection rate: a 6-year retrospective cohort study of Ommaya reservoir in pediatrics. Childs Nerv Syst. 2015;31(1):29–36.

    Article  PubMed  Google Scholar 

  80. Greenfield JP, Schwartz TH. Catheter placement for Ommaya reservoirs with frameless surgical navigation: technical note. Stereotact Funct Neurosurg. 2008;86(2):101–5.

    Article  PubMed  Google Scholar 

  81. Wilson TJ, Stetler WR Jr, Al-Holou WN, Sullivan SE. Comparison of the accuracy of ventricular catheter placement using freehand placement, ultrasonic guidance, and stereotactic neuronavigation. J Neurosurg. 2013;119(1):66–70.

    Article  PubMed  Google Scholar 

  82. Kennedy BC, Brown LT, Komotar RJ, McKhann GM 2nd. Stereotactic catheter placement for Ommaya reservoirs. J Clin Neurosci. 2016;27:44–7.

    Article  PubMed  Google Scholar 

  83. Chamberlain MC. Radioisotope CSF flow studies in leptomeningeal metastases. J Neurooncol. 1998;38(2–3):135–40.

    Article  CAS  PubMed  Google Scholar 

  84. Omuro AM, Lallana EC, Bilsky MH, DeAngelis LM. Ventriculoperitoneal shunt in patients with leptomeningeal metastasis. Neurology. 2005;64(9):1625–7.

    Article  PubMed  Google Scholar 

  85. Kim HS, Park JB, Gwak H-S, Kwon J-W, Shin S-H, Yoo H. Clinical outcome of cerebrospinal fluid shunts in patients with leptomeningeal carcinomatosis. World J Surg Oncol. 2019;17(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jung TY, Chung WK, Oh IJ. The prognostic significance of surgically treated hydrocephalus in leptomeningeal metastases. Clin Neurol Neurosurg. 2014;119:80–3.

    Article  PubMed  Google Scholar 

  87. Murakami Y, Ichikawa M, Bakhit M, et al. Palliative shunt surgery for patients with leptomeningeal metastasis. Clin Neurol Neurosurg. 2018;168:175–8.

    Article  PubMed  Google Scholar 

  88. Brower JV, Saha S, Rosenberg SA, Hullett CR, Ian RH. Management of leptomeningeal metastases: prognostic factors and associated outcomes. J Clin Neurosci. 2016;27:130–7.

    Article  PubMed  Google Scholar 

  89. Chamberlain M, Kormanik P. Leptomeningeal metastases due to melanoma. Int J Oncol. 1996;9(3):505–10.

    CAS  PubMed  Google Scholar 

  90. Cao Y, Tsien CI, Shen Z, et al. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. J Clin Oncol. 2005;23(18):4127–36.

    Article  PubMed  Google Scholar 

  91. Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013;15(10):1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chowdhary S, Chamberlain M. Leptomeningeal metastases: current concepts and management guidelines. J Natl Compr Canc Netw. 2005;3(5):693–703.

    Article  PubMed  Google Scholar 

  93. Yang TJ, Wijetunga NA, Yamada J, et al. Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro Oncol. 2020. (This Phase I study of proton craniospinal radiation for leptomeningeal disease represents a potential novel approach to offering comprehensive RT for LMD from metastatic solid malignancies to the entire CSF. The outcomes in comparison to the standard of care of WBRT and partial spinal RT will be studied in a current randomized controlled trial to inform management for the future.)

  94. Devecka M, Duma MN, Wilkens JJ, et al. Craniospinal irradiation(CSI) in patients with leptomeningeal metastases: risk-benefit-profile and development of a prognostic score for decision making in the palliative setting. BMC Cancer. 2020;20(1):501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yeboa DN, Gibbs IC. Stereotactic radiotherapy and resection of brain metastases: the role of hypofractionation. JAMA Oncol. 2020. (Contemporary summary of the role of hypofractionation, with a focus on LMD risk.)

  96. Bertke MH, Burton EC, Shaughnessy JN. Stereotactic radiosurgery as part of multimodal treatment in a bulky leptomeningeal recurrence of breast cancer. Cureus. 2016;8(3):e523.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella C. Glitza Oliva.

Ethics declarations

Conflict of interest

Yolanda Piña declares that she has no conflict of interest. Sirisha Yadugiri declares that she has no conflict of interest. Debra N. Yeboa declares that she has no conflict of interest. Sherise D. Ferguson has received research funding from Codiak BioSciences. Peter A. Forsyth declares that he has no conflict of interest. Isabella C. Glitza Oliva declares that he has no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piña, Y., Yadugiri, S., Yeboa, D.N. et al. Advances in Diagnosis and Treatment for Leptomeningeal Disease in Melanoma. Curr Oncol Rep 24, 43–54 (2022). https://doi.org/10.1007/s11912-021-01162-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-021-01162-3

Keywords

Navigation