Skip to main content

Advertisement

Log in

Advances in Management of Pediatric Ependymomas

  • Hot Topic
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Ependymomas are a heterogeneous group of neuroepithelial tumors of children and adults. In pediatric cases, the standard of care has long consisted of neurosurgical resection to the greatest extent acceptable followed by adjuvant involved field irradiation. Complete macroscopic surgical resection has remained the only consistent clinical variable known to improve survival. Adjuvant chemotherapy has yet to predictably affect outcome, possibly due to the molecular heterogeneity of histologically similar tumors. The administration of chemotherapy subsequently remains limited to clinical trials. However, recent comprehensive genomic, transcriptomic, and epigenetic interrogations of ependymomas have uncovered unique molecular characteristics and subtypes that correlated with clinical features such as age, neuroanatomical location, and prognosis. These findings represent a potential paradigm shift and provide a biologic rationale for targeted therapeutic strategies and risk-adapted administration of conventional treatment modalities. In this review, we focus on intracranial WHO grade II and III ependymoma of children and discuss conventional management strategies, followed by recent biologic findings and novel therapeutics currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cage TA, Clark AJ, Aranda D, Gupta N, Sun PP, Parsa AT, et al. A systematic review of treatment outcomes in pediatric patients with intracranial ependymomas. J Neurosurg Pediatr. 2013;11(6):673–81. doi:10.3171/2013.2.PEDS12345.

    Article  PubMed  Google Scholar 

  2. Garvin Jr JH, Selch MT, Holmes E, Berger MS, Finlay JL, Flannery A, et al. Phase II study of pre-irradiation chemotherapy for childhood intracranial ependymoma. Children’s Cancer Group protocol 9942: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;59(7):1183–9. doi:10.1002/pbc.24274.

    Article  PubMed  Google Scholar 

  3. Pizzo PA, Poplack DG. Principles and practice of pediatric oncology. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2011.

    Google Scholar 

  4. Ries LAG, SEER Program (National Cancer Institute (U.S.)). Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995 /[edited by Lynn A. Gloecker Ries … et al.]. SEER pediatric monograph, vol no 99–4649. Bethesda, MD: National Cancer Institute, SEER Program; 1999.

  5. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, et al. Alex’s Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology. 2015;16 Suppl 10:×1–x36. doi:10.1093/neuonc/nou327.

    Article  PubMed  Google Scholar 

  6. Merchant TE. Current management of childhood ependymoma. Oncology. 2002;16(5):629–42. 44 discussion 45–6, 48.

    PubMed  Google Scholar 

  7. Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 2009;10(3):258–66. This report of a single-institution's experience included 78 patients under the age of 3 years and demonstrated that event-free and overall survival can be improved for this younger age group with adjuvant 3D-conformal radiation therapy.

  8. Rodriguez D, Cheung MC, Housri N, Quinones-Hinojosa A, Camphausen K, Koniaris LG. Outcomes of malignant CNS ependymomas: an examination of 2408 cases through the surveillance, epidemiology, and end results (SEER) database (1973–2005). J Surg Res. 2009;156(2):340–51. doi:10.1016/j.jss.2009.04.024.

    Article  PubMed  Google Scholar 

  9. Cimino PJ, Agarwal A, Dehner LP. Myxopapillary ependymoma in children: a study of 11 cases and a comparison with the adult experience. Pediatr Blood Cancer. 2014. doi:10.1002/pbc.25125.

    PubMed  Google Scholar 

  10. Pollack IF, Gerszten PC, Martinez AJ, Lo KH, Shultz B, Albright AL, et al. Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery. 1995;37(4):655–66. discussion 66–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mansur DB, Perry A, Rajaram V, Michalski JM, Park TS, Leonard JR, et al. Postoperative radiation therapy for grade II and III intracranial ependymoma. Int J Radiat Oncol Biol Phys. 2005;61(2):387–91. doi:10.1016/j.ijrobp.2004.06.002.

    Article  PubMed  Google Scholar 

  12. McLaughlin MP, Marcus Jr RB, Buatti JM, McCollough WM, Mickle JP, Kedar A, et al. Ependymoma: results, prognostic factors and treatment recommendations. Int J Radiat Oncol Biol Phys. 1998;40(4):845–50.

    Article  CAS  PubMed  Google Scholar 

  13. Merchant TE, Boop FA, Kun LE, Sanford RA. A retrospective study of surgery and reirradiation for recurrent ependymoma. Int J Radiat Oncol Biol Phys. 2008;71(1):87–97. doi:10.1016/j.ijrobp.2007.09.037. Standard management options are lacking for children with recurrent ependymoma. This retrospective study examines the potential role of reirradiation as a strategy for achieving local control of recurrent tumor.

  14. Vanuytsel L, Brada M. The role of prophylactic spinal irradiation in localized intracranial ependymoma. Int J Radiat Oncol Biol Phys. 1991;21(3):825–30.

    Article  CAS  PubMed  Google Scholar 

  15. Duffner PK, Krischer JP, Sanford RA, Horowitz ME, Burger PC, Cohen ME, et al. Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr Neurosurg. 1998;28(4):215–22.

    Article  CAS  PubMed  Google Scholar 

  16. Needle MN, Goldwein JW, Grass J, Cnaan A, Bergman I, Molloy P, et al. Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood. Cancer. 1997;80(2):341–7.

    Article  CAS  PubMed  Google Scholar 

  17. Foreman NK, Love S, Gill SS, Coakham HB. Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery. 1997;40(4):856–60. discussion 60.

    Article  CAS  PubMed  Google Scholar 

  18. Bouffet E, Foreman N. Chemotherapy for intracranial ependymomas. Childs Nerv Syst ChNS Off J Int Soc Pediat Neuro. 1999;15(10):563–70. doi:10.1007/s003810050544.

    Article  CAS  Google Scholar 

  19. Merchant TE, Haida T, Wang MH, Finlay JL, Leibel SA. Anaplastic ependymoma: treatment of pediatric patients with or without craniospinal radiation therapy. J Neurosurg. 1997;86(6):943–9. doi:10.3171/jns.1997.86.6.0943.

    Article  CAS  PubMed  Google Scholar 

  20. Schroeder TM, Chintagumpala M, Okcu MF, Chiu JK, Teh BS, Woo SY, et al. Intensity-modulated radiation therapy in childhood ependymoma. Int J Radiat Oncol Biol Phys. 2008;71(4):987–93. doi:10.1016/j.ijrobp.2007.11.058.

    Article  PubMed  Google Scholar 

  21. Conklin HM, Li C, Xiong X, Ogg RJ, Merchant TE. Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(24):3965–70. doi:10.1200/JCO.2007.15.9970.

    Article  Google Scholar 

  22. Grill J, Le Deley MC, Gambarelli D, Raquin MA, Couanet D, Pierre-Kahn A, et al. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the french society of pediatric oncology. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(5):1288–96.

    CAS  Google Scholar 

  23. Koshy M, Rich S, Merchant TE, Mahmood U, Regine WF, Kwok Y. Post-operative radiation improves survival in children younger than 3 years with intracranial ependymoma. J Neuro-Oncol. 2011;105(3):583–90. doi:10.1007/s11060-011-0624-3.

    Article  Google Scholar 

  24. Merchant TE, Hua CH, Shukla H, Ying X, Nill S, Oelfke U. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51(1):110–7. doi:10.1002/pbc.21530.

    Article  PubMed  Google Scholar 

  25. Bishop AJ, Greenfield B, Mahajan A, Paulino AC, Okcu MF, Allen PK, et al. Proton beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int J Radiat Oncol Biol Phys. 2014;90(2):354–61. doi:10.1016/j.ijrobp.2014.05.051.

    Article  PubMed  Google Scholar 

  26. Hukin J, Epstein F, Lefton D, Allen J. Treatment of intracranial ependymoma by surgery alone. Pediatr Neurosurg. 1998;29(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  27. Aizer AA, Ancukiewicz M, Nguyen PL, Macdonald SM, Yock TI, Tarbell NJ, et al. Natural history and role of radiation in patients with supratentorial and infratentorial WHO grade II ependymomas: results from a population-based study. J Neuro-Oncol. 2013;115(3):411–9. doi:10.1007/s11060-013-1237-9.

    Article  Google Scholar 

  28. Zacharoulis S, Ashley S, Moreno L, Gentet JC, Massimino M, Frappaz D. Treatment and outcome of children with relapsed ependymoma: a multi-institutional retrospective analysis. Childs Nerv Syst ChNS Off J Int Soc Pediat Neuro. 2010;26(7):905–11. doi:10.1007/s00381-009-1067-4.

    Article  Google Scholar 

  29. Timmermann B, Kortmann RD, Kuhl J, Meisner C, Slavc I, Pietsch T, et al. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int J Radiat Oncol Biol Phys. 2000;46(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  30. Bouffet E, Hawkins CE, Ballourah W, Taylor MD, Bartels UK, Schoenhoff N, et al. Survival benefit for pediatric patients with recurrent ependymoma treated with reirradiation. Int J Radiat Oncol Biol Phys. 2012;83(5):1541–8. doi:10.1016/j.ijrobp.2011.10.039.

    Article  PubMed  Google Scholar 

  31. Stauder MC, Ni Laack N, Ahmed KA, Link MJ, Schomberg PJ, Pollock BE. Stereotactic radiosurgery for patients with recurrent intracranial ependymomas. J Neuro-Oncol. 2012;108(3):507–12. doi:10.1007/s11060-012-0851-2.

    Article  Google Scholar 

  32. Evans AE, Anderson JR, Lefkowitz-Boudreaux IB, Finlay JL. Adjuvant chemotherapy of childhood posterior fossa ependymoma: cranio-spinal irradiation with or without adjuvant CCNU, vincristine, and prednisone: a Childrens Cancer Group study. Med Pediatr Oncol. 1996;27(1):8–14. doi:10.1002/(SICI)1096-911X(199607)27:1<8::AID-MPO3>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  33. Robertson PL, Zeltzer PM, Boyett JM, Rorke LB, Allen JC, Geyer JR, et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg. 1998;88(4):695–703. doi:10.3171/jns.1998.88.4.0695.

    Article  CAS  PubMed  Google Scholar 

  34. Grundy RG, Wilne SA, Weston CL, Robinson K, Lashford LS, Ironside J, et al. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol. 2007;8(8):696–705. doi:10.1016/S1470-2045(07)70208-5.

    Article  PubMed  Google Scholar 

  35. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi:10.1007/s00401-007-0243-4.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Merchant TE, Jenkins JJ, Burger PC, Sanford RA, Sherwood SH, Jones-Wallace D, et al. Influence of tumor grade on time to progression after irradiation for localized ependymoma in children. Int J Radiat Oncol Biol Phys. 2002;53(1):52–7.

    Article  PubMed  Google Scholar 

  37. Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed. 2011;10:7. doi:10.1186/1477-5751-10-7.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ. The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol Off J US Can Acad Pathol Inc. 2008;21(2):165–77. doi:10.1038/modpathol.3800999.

    Google Scholar 

  39. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8(4):323–35. doi:10.1016/j.ccr.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature. 2010;466(7306):632–6. doi:10.1038/nature09173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, et al. Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(19):3182–90. doi:10.1200/JCO.2009.27.3359.

    Article  Google Scholar 

  42. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature. 2014;506(7489):445–50. doi:10.1038/nature13108. This study identified a methylation signature unique to the most common posterior fossa ependymoma subtype in children, termed CpG island methylator phenotype (CIMP). The authors report that the genes which are epigenetically silenced in this ependymoma subtype are the same as those silenced by the Polycomb repressive complex 2 (PRC2) in embryonic stem cells.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506(7489):451–5. doi:10.1038/nature13109. Fusion proteins between RELA and the poorly understood C11orf95 characterized a supratentorial subtype of ependymoma more frequently found in children. The RELA -fusion protein was demonstrated to upregulate NF-κB signalling.

  44. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43. doi:10.1016/j.ccell.2015.04.002. This comprehensive study of adult and pediatric ependymomas utilized DNA-methylation profiling to propose nine molecular subtypes, which are grouped into three neuroanatomic compartments: supratentorial, posterior fossa, and spine. The majority of pediatric ependymoma were found to be within two supratentorial subtypes (labeled ST-EPN-RELA and ST-EPN-YAP1) and one posterior fossa subtype (labeled PF-EPN-A).

    Article  CAS  PubMed  Google Scholar 

  45. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143–57. doi:10.1016/j.ccr.2011.07.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 2012;123(5):727–38. doi:10.1007/s00401-012-0941-4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Li AM, Dunham C, Tabori U, Carret AS, McNeely PD, Johnston D, et al. EZH2 expression is a prognostic factor in childhood intracranial ependymoma: a Canadian Pediatric Brain Tumor Consortium study. Cancer. 2015;121(9):1499–507. doi:10.1002/cncr.29198.

    Article  CAS  PubMed  Google Scholar 

  48. Ailon T, Dunham C, Carret AS, Tabori U, McNeely PD, Zelcer S, et al. The role of resection alone in select children with intracranial ependymoma: the Canadian Pediatric Brain Tumour Consortium experience. Childs Nerv Syst ChNS Off J Int Soc Pediatric Neuro. 2015;31(1):57–65. doi:10.1007/s00381-014-2575-4.

    Article  Google Scholar 

  49. Godfraind C, Kaczmarska JM, Kocak M, Dalton J, Wright KD, Sanford RA, et al. Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol. 2012;124(2):247–57. doi:10.1007/s00401-012-0981-9.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kilday JP, Mitra B, Domerg C, Ward J, Andreiuolo F, Osteso-Ibanez T, et al. Copy number gain of 1q25 predicts poor progression-free survival for pediatric intracranial ependymomas and enables patient risk stratification: a prospective European clinical trial cohort analysis on behalf of the Children’s cancer leukaemia group (CCLG), Societe Francaise d’Oncologie pediatrique (SFOP), and international society for pediatric oncology (SIOP). Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(7):2001–11. doi:10.1158/1078-0432.CCR-11-2489.

    Article  CAS  Google Scholar 

  51. Puget S, Grill J, Valent A, Bieche I, Dantas-Barbosa C, Kauffmann A, et al. Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(11):1884–92. doi:10.1200/JCO.2007.15.4195.

    Article  CAS  Google Scholar 

  52. Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, et al. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(33):5223–33. doi:10.1200/JCO.2006.06.3701.

    Article  CAS  Google Scholar 

  53. Gilbertson RJ, Bentley L, Hernan R, Junttila TT, Frank AJ, Haapasalo H, et al. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res Off J Am Assoc Cancer Res. 2002;8(10):3054–64.

    CAS  Google Scholar 

  54. DeWire M, Fouladi M, Turner DC, Wetmore C, Hawkins C, Jacobs C, et al. An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). J Neuro-Oncol. 2015. doi:10.1007/s11060-015-1764-7.

    Google Scholar 

  55. Fouladi M, Stewart CF, Blaney SM, Onar-Thomas A, Schaiquevich P, Packer RJ, et al. Phase I trial of lapatinib in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(27):4221–7. doi:10.1200/JCO.2010.28.4687.

    Article  CAS  Google Scholar 

  56. Fouladi M, Stewart CF, Blaney SM, Onar-Thomas A, Schaiquevich P, Packer RJ, et al. A molecular biology and phase II trial of lapatinib in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study. J Neuro-Oncol. 2013;114(2):173–9. doi:10.1007/s11060-013-1166-7.

    Article  CAS  Google Scholar 

  57. Hoffman LM, Donson AM, Nakachi I, Griesinger AM, Birks DK, Amani V, et al. Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol. 2014;127(5):731–45. doi:10.1007/s00401-013-1212-8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Griesinger AM, Josephson RJ, Donson AM, Mulcahy Levy JM, Amani V, Birks DK, et al. Interleukin-6/STAT3 pathway signaling drives an inflammatory phenotype in group a ependymoma. Cancer Immun Res. 2015. doi:10.1158/2326-6066.CIR-15-0061.

    Google Scholar 

  59. Atkinson JM, Shelat AA, Carcaboso AM, Kranenburg TA, Arnold LA, Boulos N, et al. An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell. 2011;20(3):384–99. doi:10.1016/j.ccr.2011.08.013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yu L, Baxter PA, Voicu H, Gurusiddappa S, Zhao Y, Adesina A, et al. A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-Oncology. 2010;12(6):580–94. doi:10.1093/neuonc/nop056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Frank Y. Lin would like to acknowledge the support generously provided by the Kurt Groten Family Research Scholars Award.

Compliance with Ethics Guidelines

Conflict of Interest

Frank Y. Lin and Murali Chintagumpala declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Y. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F.Y., Chintagumpala, M. Advances in Management of Pediatric Ependymomas. Curr Oncol Rep 17, 47 (2015). https://doi.org/10.1007/s11912-015-0470-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-015-0470-0

Keywords

Navigation