Skip to main content

Advertisement

Log in

The Interaction Between Sleep and Epilepsy

  • Sleep (M. Thorpy and M. Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the mutual interactions between sleep and epilepsy, including mechanisms of epileptogenesis, the relationship between sleep apnea and epilepsy, and potential strategies to treat seizures.

Recent Findings

Recent studies have highlighted the role of functional network systems underlying epileptiform activation in sleep in several epilepsy syndromes, including absence epilepsy, benign focal childhood epilepsy, and epileptic encephalopathy with spike-wave activation in sleep. Sleep disorders are common in epilepsy, and early recognition and treatment can improve seizure frequency and potentially reduce SUDEP risk. Additionally, epilepsy is associated with cyclical patterns, which has led to new treatment approaches including chronotherapy, seizure monitoring devices, and seizure forecasting. Adenosine kinase and orexin receptor antagonists are also promising new potential drug targets that could be used to treat seizures.

Summary

Sleep and epilepsy have a bidirectional relationship that intersects with many aspects of clinical management. In this article, we identify new areas of research involving future therapeutic opportunities in the field of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Al-Biltagi MA. Childhood epilepsy and sleep. World J Clin Pediatr. 2014;3:45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Quigg M, Gharai S, Ruland J, Schroeder C, Hodges M, Ingersoll KS, Thorndike FP, Yan G, Ritterband LM. Insomnia in epilepsy is associated with continuing seizures and worse quality of life. Epilepsy Res. 2016;122:91–6.

    Article  PubMed  Google Scholar 

  3. Bazil CW. Sleep and epilepsy. Semin Neurol. 2017;37:407–12.

    Article  PubMed  Google Scholar 

  4. Mashaqi S, Gozal D (2021) Normal Sleep in Humans. In: Gozal D, Kheirandish-Gozal L (eds) Pediatric Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65574-7_1

  5. Eban-Rothschild A, Appelbaum L, De Lecea L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology. 2018;43:937–52.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Halász P, Szűcs A. Sleep and Epilepsy Link by Plasticity. Front Neurol. 2020;11:1–25.

    Article  Google Scholar 

  7. Steriade M. Sleep, epilepsy, and thalamic reticular inhibitory neurons. Trends Neurosci. 2005;28:317–24.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y-Q, Zhang MQ, Li R, Qu WM, Huang ZL. The mutual interaction between sleep and epilepsy on the neurobiological basis and therapy. Curr Neuropharmacol. 2017;16:5–16.

    Article  Google Scholar 

  9. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726–31.

    Article  CAS  PubMed  Google Scholar 

  10. Halász P. How sleep activates epileptic networks? Epilepsy Research and Treatment. 2013;2013:1–19.

    Article  Google Scholar 

  11. Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB. Adenosine and sleep. Handb Exp Pharmacol. 2017;253:359–81.

    Article  CAS  Google Scholar 

  12. Boison D. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci. 2006;27:652–8.

    Article  CAS  PubMed  Google Scholar 

  13. Feldberg W, Sherwood SL. Injection of drugs into the lateral ventricle of a cat. J Physiol. 1954;123:148–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landolt HP. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol. 2008;75:2070–9.

    Article  CAS  PubMed  Google Scholar 

  15. Reppert SM, Weaver DR, Stehle JH, Rivkees SA. Molecular cloning and characterization OFA rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol. 1991;5:1037–48.

    Article  CAS  PubMed  Google Scholar 

  16. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.

    Article  CAS  PubMed  Google Scholar 

  17. Huang ZL, Zhang Z, Qu WM. Roles of adenosine and its receptors in sleep-wake regulation, 1st ed. Int Rev Neurobiol. 2014. https://doi.org/10.1016/B978-0-12-801022-8.00014-3

  18. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73:379–96.

    Article  CAS  PubMed  Google Scholar 

  19. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276:1265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Porkka-Heiskanen T, Strecker RE, McCarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 2000;99:507–17.

    Article  CAS  PubMed  Google Scholar 

  21. Schwierin B, Borbely AA, Tobler I. Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J 1Pharmacol. 1996;300:163–71.

    Article  CAS  Google Scholar 

  22. Benington JH, Kodali SK, Heller HC. Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res. 1995;692:79–85.

    Article  CAS  PubMed  Google Scholar 

  23. Satoh S. Region-dependent difference in the sleep-promoting potency of an adenosine a2A receptor agonist. Eur J Neurosci. 1999;11:1587–97.

    Article  CAS  PubMed  Google Scholar 

  24. Urade Y, Eguchi N, Qu WM, Sakata M, Huang ZL, Chen JF, Schwarzschild MA, Fink JS, Hayaishi O. Minireview: Sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 2003;61(11 suppl 6):S94-6. https://doi.org/10.1212/01.wnl.0000095222.41066.5e.

    Article  CAS  PubMed  Google Scholar 

  25. During MJ, Spencer DD. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol. 1992;32:618–24.

    Article  CAS  PubMed  Google Scholar 

  26. Lado FA, Moshé SL. How do seizures stop? Epilepsia. 2008;49:1651–64.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pignataro G, Maysami S, Studer FE, Wilz A, Simon RP, Boison D. Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab. 2008;28:17–23.

    Article  CAS  PubMed  Google Scholar 

  28. Young D, Dragunow M. 28. Young D, Dragunow M (1994) Status epilepticus may be caused by loss of ade. Neuroscience. 1994;58:245–61.

    Article  CAS  PubMed  Google Scholar 

  29. Fukuda M, Suzuki Y, Hino H, Kuzume K, Morimoto T, Ishii E. Adenosine A1 receptor blockage mediates theophylline-associated seizures. Epilepsia. 2010;51:483–7.

    Article  CAS  PubMed  Google Scholar 

  30. Klein P, Dingledine R, Aronica E, et al. Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia. 2018;59:37–66.

    Article  CAS  PubMed  Google Scholar 

  31. •Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull. 2019;151:46–54. (Reviews the role of adenosine and associated mechanisms involved in seizure generation and epileptogenesis and therapeutic opportunities and challenges of adenosine augmentation therapies)

    Article  CAS  PubMed  Google Scholar 

  32. Aronica E, Zurolo E, Iyer A, De Groot M, Anink J, Carbonell C, Van Vliet EA, Baayen JC, Boison D, Gorter JA. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia. 2011;52(9):1645–55. https://doi.org/10.1111/j.1528-1167.2011.03115.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fedele DE, Gouder N, Güttinger M, Gabernet L, Scheurer L, Rülicke T, Crestani F, Boison D. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain. 2005;128:2383–95.

    Article  PubMed  Google Scholar 

  34. Luan G, Gao Q, Guan Y, Zhai F, Zhou J, Liu C, Chen Y, Yao K, Qi X, Li T. Upregulation of adenosine kinase in Rasmussen encephalitis. J Neuropathol Exp Neurol. 2013;72:1000–8.

    Article  CAS  PubMed  Google Scholar 

  35. Luan G, Gao Q, Zhai F, Zhou J, Liu C, Chen Y, Li T. Adenosine kinase expression in cortical dysplasia with balloon cells: analysis of developmental lineage of cell types. J Neuropathol Exp Neurol. 2015;74:132–47.

    Article  CAS  PubMed  Google Scholar 

  36. Luan G, Wang X, Chen F, Gao Q, Zhou J, Guan Y, Wang J, Zhai F, Chen Y, Li T. Overexpression of adenosine kinase in patients with epilepsy associated with Sturge-Weber Syndrome. Neuropsychiatry. 2018;08:261–8.

    Article  Google Scholar 

  37. de Groot M, Iyer A, Zurolo E, Anink J, Heimans JJ, Boison D, Reijneveld JC, Aronica E. Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor-associated epilepsy. Epilepsia. 2012;53:58–66.

    Article  PubMed  CAS  Google Scholar 

  38. Gouder N, Scheurer L, Fritschy JM, Boison D. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci. 2004;24:692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Theofilas P, Brar S, Stewart KA, Shen HY, Sandau US, Poulsen D, Boison D. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia. 2011;52:589–601.

    Article  PubMed  PubMed Central  Google Scholar 

  40. ••Sandau US, Yahya M, Bigej R, Friedman JL, Saleumvong B, Boison D. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia. 2019;60:615–25. (First study to demonstrate that ADK inhibitors inhibit epileptogenesis in a mouse model of temporal lobe epilepsy)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. ••Wang X, Li T. Role of adenosine kinase inhibitor in adenosine augmentation therapy for epilepsy: a potential novel drug for epilepsy. Curr Drug Targets. 2020;21:252–7. (Review of the role ADK inhibitors as a potential new treatment for epilepsy)

    Article  CAS  PubMed  Google Scholar 

  42. Tescarollo FC, Rombo DM, DeLiberto LK, Fedele DE, Alharfoush E, Tomé ÂR, Cunha RA, Sebastião AM, Boison D. Role of adenosine in epilepsy and seizures. J Caffeine Adenosine Res. 2020;10:45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 2001;901:259–64.

    Article  CAS  PubMed  Google Scholar 

  44. Kaur S, Thankachan S, Begum S, Liu M, Blanco-Centurion C, Shiromani PJ. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vl PAG) increase REM sleep in hypocretin knockout mice. PLoS One. 2009;4(7):e6346. https://doi.org/10.1371/journal.pone.0006346.

  45. Pedrazzoli M, et al. Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation. Brain Res. 2004;995:1–6.

    Article  CAS  PubMed  Google Scholar 

  46. Scammell T. Narcolepsy NEJM. 2015;373:2654–62.

    Article  CAS  PubMed  Google Scholar 

  47. •Ng MC. Orexin and epilepsy: potential role of REM sleep. Sleep. 2017. https://doi.org/10.1093/sleep/zsw061. (Excellent review on the role of orexin in REM sleep and epilepsy)

    Article  PubMed  Google Scholar 

  48. Ng M, Pavlova M. Why are seizures rare in rapid eye movement sleep? review of the frequency of seizures in different sleep stages. Epilepsy Res Treat. 2013;2013:1–10.

    Article  Google Scholar 

  49. Kumar P, Rajar TR. Seizure susceptibility decreases with enhancement of rapid eye movement sleep. Brain Res. 2001;922:299–304.

    Article  CAS  PubMed  Google Scholar 

  50. Shouse M. State disorders and state-dependent seizures in amygdala-kindled cats. Exp Neurol. 1986;92:601–8.

    Article  CAS  PubMed  Google Scholar 

  51. Frauscher B, von Ellenrieder N, Dubeau F, Gotman J. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans. Epilepsia. 2016;57:879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bagshaw AP, Jacobs J, Levan P, Dubeau F, Gotman J. Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy. Epilepsia. 2009;50:617–28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tanaka T, Naquet R. Kindling effect and sleep organization in cats. Electroencephalogr Clin Neurophysiol. 1975;39:449–54.

    Article  CAS  PubMed  Google Scholar 

  54. Calvo JM, Alvarado R, Briones R, Paz C, Frenandez-Guardiola A. Amygdaloid kindling during rapid eye movement (REM) sleep in cats. Neurosci Lett. 1982;29:255–9.

    Article  CAS  PubMed  Google Scholar 

  55. ••Asadi S, Roohbakhsh A, Shamsizadeh A, Fereidoni M, Kordijaz E, Moghimi A. The effect of intracerebroventricular administration of orexin receptor type 2 antagonist on pentylenetetrazol-induced kindled seizures and anxiety in rats. BMC Neurosci. 2018;19:4–11. (This study showed that intracerebroventricular administration of an orexin receptor type 2 antagonist (TCS OX2 29) increased the latency period and decreased the duration time of seizures in a rat model of epilepsy)

    Article  CAS  Google Scholar 

  56. Seneviratne U, Boston RC, Cook M, D’Souza W. Temporal patterns of epileptiform discharges in genetic generalized epilepsies. Epilepsy Behav. 2016;64:18–25.

    Article  PubMed  Google Scholar 

  57. Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The molecular genetic interaction between circadian rhythms and susceptibility to seizures and epilepsy. Front Neurol. 2020;11:1–17.

    Article  Google Scholar 

  58. Seneviratne U, Lai A, Cook M, D’Souza W, Boston RC. “Sleep Surge”: the impact of sleep onset and offset on epileptiform discharges in idiopathic generalized epilepsies. Clin Neurophysiol. 2020;131:1044–50.

    Article  PubMed  Google Scholar 

  59. Gloor P. Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms. Electroencephalogr Clin Neurophysiol Suppl. 1978;34:245–9.

    Google Scholar 

  60. Gloor P. Generalized epilepsy with spike-and-wave discharge: a reinterpretation of its electrographic and clinical manifestations. The 1977 William G. Lennox Lecture. Am Epilepsy Soc Epilepsia. 1979;20:571–88.

    CAS  Google Scholar 

  61. Kostopoulos G. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin Neurophysiol. 2000;111:S27-38.

    Article  PubMed  Google Scholar 

  62. Steriade M, Contreras D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J Neurosci. 1995;15:623–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Steriade M, Amzica F. Short- and long-range neuronal synchronization of the slow (<1 Hz) cortical oscillation. J Neurophysiol. 1995;73:20–38.

    Article  PubMed  Google Scholar 

  64. Huguenard J. Current controversy: spikes, bursts, and synchrony in generalized absence epilepsy: unresolved questions regarding thalamocortical synchrony in absence epilepsy. Epilepsy Currents. 2019;19:105–11.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Halász P, Bódizs R, Ujma PP, Fabó D, Szűcs A. Strong relationship between NREM sleep, epilepsy and plastic functions — a conceptual review on the neurophysiology background. Epilepsy Res. 2019;150:95–105.

    Article  PubMed  Google Scholar 

  66. Horita H, Uchida E, Maekawa KM. Circadian rhythm of regular spike-and-wave discharges in childhood absence epilepsy. Brain Develop. 1991;13:200–2.

    Article  CAS  Google Scholar 

  67. Huguenard JR, Prince DA. Clonazepam suppresses GABAB mediated inhibition in thalamic neurons through effects in nucleus reticularis. J Neurophysiol. 1994;71:2576–81.

    Article  CAS  PubMed  Google Scholar 

  68. Kozák G, Földi T, Berényi A. Spike-and-wave discharges are not pathological sleep spindles, network-level aspects of age-dependent absence seizure development in rats. Eneuro. 2020;7(1). https://doi.org/10.1523/ENEURO.0253-19.2019.

  69. Kothare SV, Kaleyias J. Sleep and epilepsy in children and adolescents. Sleep Med. 2010;11:674–85.

    Article  PubMed  Google Scholar 

  70. Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, Guerreiro M, Gwer S, Zuberi SM, Wilmshurst JM, Yozawitz E, Pressler R, Hirsch E, Wiebe S, Cross HJ, Perucca E, Moshé SL, Tinuper P, Auvin S. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia. 2022;63(6):1398–442. https://doi.org/10.1111/epi.17241.

    Article  PubMed  Google Scholar 

  71. •Ross EE, Stoyell SM, Kramer MA, Berg AT, Chu CJ. The natural history of seizures and neuropsychiatric symptoms in childhood epilepsy with centrotemporal spikes (CECTS). Epilepsy Behav. 2020;103:106437. (Large prospective cohort study of children with self-limited childhood epilepsy with centrotemporal spikes which characterizes the neuropsychiatric profile at disease presentation through epilepsy resolution, the natural history of seizures, and treatment response)

    Article  PubMed  Google Scholar 

  72. Wickens S, Bowden SC, D’Souza W. Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis. Epilepsia. 2017;58:1673–85.

    Article  PubMed  Google Scholar 

  73. Doumlele K, Friedman D, Buchhalter J, Donner EJ, Louik J, Devinsky O. Sudden unexpected death in epilepsy among patients with benign childhood epilepsy with centrotemporal spikes. JAMA Neurol. 2017;74:645–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gong P, Xue J, Jiao X, Zhang Y, Yang Z. Genetic etiologies in developmental and/or epileptic encephalopathy with electrical status epilepticus during sleep: cohort study. Front Genet. 2021;12:607965. https://doi.org/10.3389/fgene.2021.607965.

  75. Kessi M, Peng J, Yang L, Xiong J, Duan H, Pang N, Yin F. Genetic etiologies of the electrical status epilepticus during slow wave sleep: systematic review. BMC Genet. 2018;19(1):1-5. https://doi.org/10.1186/s12863-018-0628-5.

  76. ••Siniatchkin M, Van Bogaert P. Pathophysiology of encephalopathy related to continuous spike and waves during sleep: the contribution of neuroimaging. Epileptic Disord. 2019;21:S48–53. (Literature review of neuroimaging studies that have contributed to our knowledge of pathophysiological mechanisms underlying ESES)

    Google Scholar 

  77. De Tiege X, Goldman S, Laureys S, et al. Regional cerebral glucose metabolism in epilepsies with continuous spikes and waves during sleep. Neurology. 2004;63:853–7.

    Article  PubMed  CAS  Google Scholar 

  78. Ligot N, Archambaud F, Trotta N, Goldman S, Van Bogaert P, Chiron C, De Tiège X. Default mode network hypometabolism in epileptic encephalopathies with CSWS. Epilepsy Res. 2014;108:861–71.

    Article  CAS  PubMed  Google Scholar 

  79. De Tiège X, Trotta N, de Beeck MO, Bourguignon M, Marty B, Wens V, Nonclercq A, Goldman S, Van Bogaert P. Neurophysiological activity underlying altered brain metabolism in epileptic encephalopathies with CSWS. Epilepsy Res. 2013;105:316–25.

    Article  PubMed  CAS  Google Scholar 

  80. Siniatchkin M, Groening K, Moehring J, Moeller F, Boor R, Brodbeck V, Michel CM, Rodionov R, Lemieux L, Stephani U. Neuronal networks in children with continuous spikes and waves during slow sleep. Brain. 2010;133:2798–813.

    Article  PubMed  Google Scholar 

  81. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    Article  CAS  PubMed  Google Scholar 

  82. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33:279–96.

    Article  PubMed  Google Scholar 

  83. Maquet P, Hirsch E, Metz-Lutz M, Motte K, Dive D, Marescaux C, Franck G. Regional cerebral glucose metabolism in children with deterioration of one or more cognitive functions and continuous spike-and-wave discharges during sleep. Brain. 1995;118:1497–520.

    Article  PubMed  Google Scholar 

  84. De Tiège X, Ligot N, Goldman S, Poznanski N, de Saint MA, Van Bogaert P. Metabolic evidence for remote inhibition in epilepsies with continuous spike-waves during sleep. Neuroimage. 2008;40:802–10.

    Article  PubMed  Google Scholar 

  85. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gibbs SA, Nobili L, Halász P. Interictal epileptiform discharges in sleep and the role of the thalamus in Encephalopathy related to Status Epilepticus during slow Sleep. Epileptic Disord. 2019;21:S54–61.

    Google Scholar 

  87. Nickels K, Wirrell E. Electrical status epilepticus in sleep. Semin Pediatr Neurol. 2008;15:50–60.

    Article  PubMed  Google Scholar 

  88. Guzzetta F, Battaglia D, Veredice C, Donvito V, Pane M, Lettori D, Chiricozzi F, Chieffo D, Tartaglione T, Dravet C. Early thalamic injury associated with epilepsy and continuous spike-wave during slow sleep. Epilepsia. 2005;46:889–900.

    Article  PubMed  Google Scholar 

  89. Sánchez Fernández I, Peters JM, Akhondi-Asl A, Klehm J, Warfield SK, Loddenkemper T. Reduced thalamic volume in patients with electrical status epilepticus in sleep. Epilepsy Res. 2017;130:74–80.

    Article  PubMed  Google Scholar 

  90. Agarwal R, Kumar A, Tiwari VN, Chugani H. Thalamic abnormalities in children with continuous spike-wave during slow-wave sleep: an F-18-fluorodeoxyglucose positron emission tomography perspective. Epilepsia. 2016;57:263–71.

    Article  PubMed  Google Scholar 

  91. Halasz P, Kelemen A, Rosdy B, Rasonyi G, Clemens B, Szucs A. Perisylvian epileptic network revisited. Seizure. 2019;65:P31-41.

    Article  Google Scholar 

  92. Watemberg N, Afunevitz S, Ganelin-Cohen E, Mahajnah M. Clinical features at the time of diagnosis of benign epilepsy with centrotemporal spikes do not predict subsequent seizures. Pediatr Neurol. 2018;88:36–9.

    Article  PubMed  Google Scholar 

  93. Aeby A, Santalucia R, Van Hecke A, Nebbioso A, Vermeiren J, Deconinck N, De Tiège X, Van Bogaert P. A qualitative awake EEG score for the diagnosis of continuous spike and waves during sleep (CSWS) syndrome in self-limited focal epilepsy (SFE): a case-control study. Seizure. 2021;84:34–9.

    Article  PubMed  Google Scholar 

  94. •van den Munckhof B, Arzimanoglou A, Perucca E, et al. Corticosteroids versus clobazam in epileptic encephalopathy with ESES: a European multicentre randomised controlled clinical trial (RESCUE ESES*). Trials. 2020;21:1–11. (Ongoing multicenter randomized clinical trial of corticosteroids versus clobazam in treatment of patients with ESES)

    CAS  Google Scholar 

  95. Fine AL, Wirrell EC, Wong-Kisiel LC, Nickels KC. Acetazolamide for electrical status epilepticus in slow-wave sleep. Epilepsia. 2015;56:e134–8.

    Article  CAS  PubMed  Google Scholar 

  96. Kelley SA, Kossoff EH. How effective is the ketogenic diet for electrical status epilepticus of sleep? Epilepsy Res. 2016;127:339–43.

    Article  PubMed  Google Scholar 

  97. Gold JM, Hall M, Shah SS, et al. Long length of hospital stay in children with medical complexity. J Hosp Med. 2016;11:750–6.

    Article  PubMed  Google Scholar 

  98. Avanzini G, Manganotti P, Meletti S, Moshé SL, Panzica F, Wolf P, Capovilla G. The system epilepsies: a pathophysiological hypothesis. Epilepsia. 2012;53:771–8.

    Article  PubMed  Google Scholar 

  99. Capovilla G, Moshé SL, Wolf P, Avanzini G. Epileptic encephalopathy as models of system epilepsy. Epilepsia. 2013;54:34–7.

    Article  PubMed  Google Scholar 

  100. Steriade M. Neuronal substrates of sleep and epilepsy. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  101. Tassinari CA, Rubboli G. Encephalopathy related to Status Epilepticus during slow Sleep: current concepts and future directions. Epileptic Disord. 2019;21:S82–7.

    Google Scholar 

  102. Bazil C. Epilepsy and sleep disturbance. Epilepsy Behav. 2003;4:39–45.

    Article  Google Scholar 

  103. Zanzmera P, Shukla G, Gupta A, Singh H, Goyal V, Srivastava A, Behari M. Markedly disturbed sleep in medically refractory compared to controlled epilepsy - a clinical and polysomnography study. Seizure. 2012;21:487–90.

    Article  PubMed  Google Scholar 

  104. Malow BA. Sleep deprivation and epilepsy. Epilepsy. Currents. 2004;4:193–5.

    Google Scholar 

  105. Malow BA, Levy K, Maturen K, Bowes R. Obstructive sleep apnea is common in medically refractory epilepsy patients. Neurology. 2000;55:1002–7.

    Article  CAS  PubMed  Google Scholar 

  106. ••McCarter A, Timm P, Shepard P, et al. Obstructive sleep apnea in refractory epilepsy: a pilot study investigating frequency, clinical features, and association with risk of sudden unexpected death in epilepsy. Epilepsia. 2018;59:1973–81. (Prospective study of 49 adults with refractory epilepsy admitted to a single center epilepsy monitoring unit, which identified a high frequency of probable obstructive sleep apnea and possible association between OSA and SUDEP risk in these patients)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rashed HR, Tork MA, El-Nabil LM, El-Khayat NM, Ahmed NS, Abdelhady ST, Abdulghani KO, Abdulghani MO. Refractory epilepsy and obstructive sleep apnea: is there an association? Egyp J Neurol, Psychiatry Neurosurg. 2019;55:1–6.

    Google Scholar 

  108. Vendrame M, Auerbach S, Loddenkemper T, Kothare S, Montouris G. Effect of continuous positive airway pressure treatment on seizure control in patients with obstructive sleep apnea and epilepsy. Epilepsia. 2011;52:168–71.

    Article  Google Scholar 

  109. Foldvary-Schaefer N, Stephenson L, Bingaman W. Resolution of obstructive sleep apnea with epilepsy surgery? Expanding the relationship between sleep and epilepsy. Epilepsia. 2008;49:1457–9.

    Article  PubMed  Google Scholar 

  110. ••Dye TJ, Hantragool S, Carosella C, Huang G, Hossain MM, Simakajornboon N. Sleep disordered breathing in children receiving vagus nerve stimulation therapy. Sleep Med. 2021;79:101–6. (Retrospective review of 22 children with refractory epilepsy who received VNS therapy which demonstrated a high incidence (86.4%) of OSA after VNS insertion, highlighting the importance of screening for sleep disordered breathing prior to and following VNS implantation)

    Article  PubMed  Google Scholar 

  111. Khurana DS, Reumann M, Hobdell EF, Neff S, Valencia I, Legido A, Kothare SV. Vagus nerve stimulation in children with refractory epilepsy: unusual complications and relationship to sleep-disordered breathing. Child’s Nervous System. 2007;23:1309–12.

    Article  PubMed  Google Scholar 

  112. Salvadé A, Ryvlin P, Rossetti AO. Impact of vagus nerve stimulation on sleep-related breathing disorders in adults with epilepsy. Epilepsy Behav. 2018;79:126–9.

    Article  PubMed  Google Scholar 

  113. Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia. 2012;53:227–33.

    Article  PubMed  Google Scholar 

  114. Reynolds EH. Translation and analysis of a cuneiform text forming part of a babylonian treatise on epilepsy. Med Hist. 1990;34:185–98.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mead R. A treatise concerning the influence of the sun and moon upon the human bodies and the diseases thereby produced. J. Brindley; 1748.

  116. Gowers W. Epilepsy and other chronic convulsive diseases. London: William Wood; 1885.

    Google Scholar 

  117. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.

    Article  CAS  PubMed  Google Scholar 

  118. Matos HD, Koike BD, Pereira WD, De Andrade TG, Castro OW, Duzzioni M, Kodali M, Leite JP, Shetty AK, Gitaí DL. Rhythms of core clock genes and spontaneous locomotor activity in post-status epilepticus model of mesial temporal lobe epilepsy. Front Neurol. 2018;9:632. https://doi.org/10.3389/fneur.2018.00632.

  119. Li P, Fu X, Smith NA, et al. Loss of CLOCK results in dysfunction of brain circuits underlying focal epilepsy. Neuron. 2017;96:387-401.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gerstner JR, Smith GG, Lenz O, Perron IJ, Buono RJ, Ferraro TN. BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice. Front Syst Neurosci. 2014;8:1–7.

    Article  Google Scholar 

  121. Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, Baud MO. Cycles in epilepsy. Nature Reviews. Neurology. 2021;17:267–84.

    PubMed  Google Scholar 

  122. Christian W, Janz DJ. Impulsiv-Petit Mal. Deutsche Zeitschrift fur. Nervenheilkunde. 1957;176:346–86.

    Google Scholar 

  123. Pung T, Schmitz B. Circadian rhythm and personality profile in juvenile myoclonic epilepsy. Epilepsia. 2006;47:111–4.

    Article  PubMed  Google Scholar 

  124. Kendis H, Baron K, Schuele SU, Patel B, Attarian H. Chronotypes in patients with epilepsy: does the type of epilepsy make a difference?. Behav Neurol. 2015;2015. https://doi.org/10.1155/2015/941354.

  125. ••Leguia MG, Andrzejak RG, Rummel C, Fan JM, Mirro EA, Tcheng TK, Rao VR, Baud MO. Seizure cycles in focal epilepsy. JAMA Neurol. 2021;78:454–63. (Retrospective cohort study of 222 adults with refractory focal epilepsy implanted with the NeuroPace device, which analyzed data from continuous EEG and seizure diaries collected over durations of up to 10 years and found a high prevalence of circadian (89%), multidien (60%), and circannual (12%) cycles)

    Article  PubMed  Google Scholar 

  126. Rao VR, Leguia GM, Tcheng TK, Baud MO. Cues for seizure timing. Epilepsia. 2021;62:S15-31. https://doi.org/10.1111/epi.16611.

    Article  PubMed  Google Scholar 

  127. Goldenholz D, Rakesh K, Kush K, GaínzaLein M, Hodgeman R, Moss R, Theodore WH, Loddenkemper T. Different as night and day: patterns of isolated seizures, clusters, and status epilepticus. Epilepsia. 2018;59:e72–7.

    Article  Google Scholar 

  128. Jin B, Aung T, Geng Y, Wang S. Epilepsy and its interaction with sleep and circadian rhythm. Front Neurol. 2020;11:1–7.

    Article  Google Scholar 

  129. Winawer MR, Shih J, Beck ES, Hunter JE, Epstein MP. Genetic effects on sleep/wake variation of seizures. Epilepsia. 2016;57:557–65.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Loddenkemper T, Vendrame M, Zarowski M, Gregas M, Alexopoulos AV, Wylie E, Kothare SV. Circadian patterns of pediatric seizures. Neurology. 2011;76:145–53.

    Article  CAS  PubMed  Google Scholar 

  131. Leite Góes Gitai D, de Andrade TG, dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev. 2019;98:122–34.

    Article  PubMed  Google Scholar 

  132. Manganaro S, Loddenkemper T, Rotenberg A. The need for antiepileptic drug chronotherapy to treat selected childhood epilepsy syndromes and avert the harmful consequences of drug resistance. J Cent Nerv Syst Dis. 2017;9:117957351668588.

    Article  Google Scholar 

  133. Thome-Souza S, Klehm J, Jackson M, Kadish NE, Manganaro S, Fernández IS, Loddenkemper T. Clobazam higher-evening differential dosing as an add-on therapy in refractory epilepsy. Seizure. 2016;40:1–6.

    Article  PubMed  Google Scholar 

  134. Guilhoto LMFF, Loddenkemper T, Vendrame M, Bergin A, Bourgeois BF, Kothare SV. Higher evening antiepileptic drug dose for nocturnal and early-morning seizures. Epilepsy Behav. 2011;20:334–7.

    Article  CAS  PubMed  Google Scholar 

  135. Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol. 2007;64:1595–9.

    Article  PubMed  Google Scholar 

  136. Halford JJ, Sperling MR, Nair DR, et al. Detection of generalized tonic–clonic seizures using surface electromyographic monitoring. Epilepsia. 2017;58:1861–9.

    Article  PubMed  PubMed Central  Google Scholar 

  137. •Spencer DC, Sun FT, Brown SN, Jobst BC, Fountain NB, Wong VSS, Mirro EA, Quigg M. Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring. Epilepsia. 2016;57:1495–502. (Retrospective study of 134 RNS system trial participants demonstrating strong circadian and ultradien periodicity in long term intracranial EEG monitoring)

    Article  CAS  PubMed  Google Scholar 

  138. ••Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, Rao VR. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9:1–10. (This study of 37 patients implanted with the RNS system demonstrated long term multidien patterns of interictal epileptiform activity (IEA), with seizures occurring preferentially during the rising phase of multidien IEA rhythms)

    Article  CAS  Google Scholar 

  139. ••Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff AFG, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. The Lancet Neurology. 2013;12:P563-571. (Early clinical trial of refractory focal epilepsy patients with intracranial electrocorticography recording, attached to a handheld portable device designed to signal the risk of imminent seizures. This study established feasibility of seizure prediction in a clinical setting and provided groundwork for future research involving seizure prediction algorithms.)

    Article  Google Scholar 

  140. Karoly PJ, Ung H, Grayden DB, Kuhlmann L, Leyde K, Cook MJ, Freestone DR. The circadian profile of epilepsy improves seizure forecasting. Brain. 2017;140:2169–82.

    Article  PubMed  Google Scholar 

  141. Karoly PJ, Freestone DR, Boston R, Grayden DB, Himes D, Leyde K, Seneviratne U, Berkovic S, O’Brien T, Cook MJ. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139:1066–78.

    Article  PubMed  Google Scholar 

  142. Dumanis SB, French JA, Bernard C, Worrell GA, Fureman BE. Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop. eNeuro. 2017;4:1–5.

    Article  Google Scholar 

  143. Epilepsy Foundation. 2016 Community Survey. https://www.epilepsy.com/sites/default/files/atoms/files/community-survey-report-2016%20V2.pdf.

  144. Baud MO, Rao VR. Gauging seizure risk. Neurology. 2018;91:967–73.

    Article  PubMed  Google Scholar 

  145. ••Kiral-Kornek I, Roy S, Nurse E, et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine. 2018;27:103–11. (Analysis of intracranial EEG data from 10 patients using a novel seizure detection device, which had mean sensitivity of 69% and mean time in warning of 27%, with significant mean improvement over chance by 42% across all patients.)

    Article  PubMed  Google Scholar 

  146. Morse AM, Kothare SV. Pediatric sudden unexpected death in epilepsy. Pediatr Neurol. 2016;57:7–16.

    Article  PubMed  Google Scholar 

  147. ••Devinsky O, Friedman D, Duckrow RB, Fountain NB, Gwinn RP, Leiphart JW, Murro AM, Van Ness PC. Sudden unexpected death in epilepsy in patients treated with brain-responsive neurostimulation. Epilepsia. 2018;59:555–61. (Examined the incidence and clinical features of SUDEP in patients treated with the RNS system, identifying 14 deaths among 707 patients with a probable or definite SUDEP rate of 2.0/1000 patient stimulation years)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kothare.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roliz, A.H., Kothare, S. The Interaction Between Sleep and Epilepsy. Curr Neurol Neurosci Rep 22, 551–563 (2022). https://doi.org/10.1007/s11910-022-01219-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01219-1

Keywords

Navigation